Abstract
This paper presents a novel Multiobjective Genetic Algorithm, named Modified Non-Dominated Sorting Genetic Algorithm Distance Oriented (MNSGA-DO), which aims to adjust the NSGA-DO selection operator to improve its diversity when applied to continuous multiobjective optimization problems. In order to validate this new Genetic Algorithm, we carried out a performance comparison among it and the genetic algorithms NSGA-II and NSGA-DO, regarding continuous multiobjective optimization problems. To this aim, a set of standard benchmark problems, the so-called ZDT functions, was applied considering the quality indicators Generational Distance, Inverted Generational Distance and Hypervolume as well as a time evaluation. The results demonstrate that MNSGA-DO overcomes NSGA-II and NSGA-DO in almost all benchmarks, obtaining more accurate solutions and diversity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., Salomon, L.: Performance indicators in multiobjective optimization. Eur. J. Oper. Res. 292(2), 397–422 (2021). https://doi.org/10.1016/j.ejor.2020.11.016
Bora, T.C., Mariani, V.C., dos Santos Coelho, L.: Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm. Appl. Therm. Eng. 146, 688–700 (2019). https://doi.org/10.1016/j.applthermaleng.2018.10.020
Chang, K.H.: e-design: computer-aided engineering design. Elsevier Sci. (2015). https://doi.org/10.1016/C2009-0-63076-2
Coroiu, A.M.: Tuning model parameters through a genetic algorithm approach. In: 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 135–140 (2016). https://doi.org/10.1109/ICCP.2016.7737135
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)
Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International Conference Parallel Problem Solving from Nature, vol. 1917 (2000)
Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)
George, T., Amudha, T.: Genetic algorithm based multi-objective optimization framework to solve traveling salesman problem. In: Sharma, H., Govindan, K., Poonia, R.C., Kumar, S., El-Medany, W.M. (eds.) Advances in Computing and Intelligent Systems. AIS, pp. 141–151. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0222-4_12
Guerrero, C., Lera, I., Juiz, C.: Genetic algorithm for multi-objective optimization of container allocation in cloud architecture. J. Grid Comput. 16(1), 113–135 (2017). https://doi.org/10.1007/s10723-017-9419-x
Hamdy, M., Nguyen, A.T., Hensen, J.L.M.: A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems. Energy Build. 121, 57–71 (2016). https://doi.org/10.1016/j.enbuild.2016.03.035
Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Performance comparison of NSGA-II and NSGA-III on various many-objective test problems. In: 2016 IEEE Congress on Evolutionary Computation, pp. 3045–3052. IEEE (2016)
Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)
Maghawry, A., Hodhod, R., Omar, Y., Kholief, M.: An approach for optimizing multi-objective problems using hybrid genetic algorithms. Soft. Comput. 25(1), 389–405 (2020). https://doi.org/10.1007/s00500-020-05149-3
Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers (1999)
Pimenta, A., Camargo, H.: NSGA-DO: non-dominated sorting genetic algorithm distance oriented. In: IEEE International Conference Fuzzy System, pp. 1–8 (2015). https://doi.org/10.1109/FUZZ-IEEE.2015.7338080
Saborido, R., Ruiz, A.B., Bermúdez, J.D., Vercher, E., Luque, M.: Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Appl. Soft Comput. 39, 48–63 (2016). https://doi.org/10.1016/j.asoc.2015.11.005
Seada, H., Deb, K.: U-NSGA-III: a unified evolutionary optimization procedure for single, multiple, and many objectives: proof-of-principle results. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 34–49. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_3
Priya, V., Umamaheswari, K.: Enhanced continuous and discrete multi objective particle swarm optimization for text summarization. Clust. Comput. 22(1), 229–240 (2018). https://doi.org/10.1007/s10586-018-2674-1
Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945). https://doi.org/10.2307/3001968
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.1162/106365600568202
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Machado, J.G., Pires, M.G., Bertoni, F.C., de Macedo Pimenta, A.H., de Arruda Camargo, H. (2021). A Modified NSGA-DO for Solving Multiobjective Optimization Problems. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13073. Springer, Cham. https://doi.org/10.1007/978-3-030-91702-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-91702-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91701-2
Online ISBN: 978-3-030-91702-9
eBook Packages: Computer ScienceComputer Science (R0)