Skip to main content

A Modified NSGA-DO for Solving Multiobjective Optimization Problems

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2021)

Abstract

This paper presents a novel Multiobjective Genetic Algorithm, named Modified Non-Dominated Sorting Genetic Algorithm Distance Oriented (MNSGA-DO), which aims to adjust the NSGA-DO selection operator to improve its diversity when applied to continuous multiobjective optimization problems. In order to validate this new Genetic Algorithm, we carried out a performance comparison among it and the genetic algorithms NSGA-II and NSGA-DO, regarding continuous multiobjective optimization problems. To this aim, a set of standard benchmark problems, the so-called ZDT functions, was applied considering the quality indicators Generational Distance, Inverted Generational Distance and Hypervolume as well as a time evaluation. The results demonstrate that MNSGA-DO overcomes NSGA-II and NSGA-DO in almost all benchmarks, obtaining more accurate solutions and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., Salomon, L.: Performance indicators in multiobjective optimization. Eur. J. Oper. Res. 292(2), 397–422 (2021). https://doi.org/10.1016/j.ejor.2020.11.016

    Article  MathSciNet  MATH  Google Scholar 

  2. Bora, T.C., Mariani, V.C., dos Santos Coelho, L.: Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm. Appl. Therm. Eng. 146, 688–700 (2019). https://doi.org/10.1016/j.applthermaleng.2018.10.020

    Article  Google Scholar 

  3. Chang, K.H.: e-design: computer-aided engineering design. Elsevier Sci. (2015). https://doi.org/10.1016/C2009-0-63076-2

    Article  Google Scholar 

  4. Coroiu, A.M.: Tuning model parameters through a genetic algorithm approach. In: 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 135–140 (2016). https://doi.org/10.1109/ICCP.2016.7737135

  5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  6. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International Conference Parallel Problem Solving from Nature, vol. 1917 (2000)

    Google Scholar 

  7. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)

    Article  Google Scholar 

  8. George, T., Amudha, T.: Genetic algorithm based multi-objective optimization framework to solve traveling salesman problem. In: Sharma, H., Govindan, K., Poonia, R.C., Kumar, S., El-Medany, W.M. (eds.) Advances in Computing and Intelligent Systems. AIS, pp. 141–151. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0222-4_12

    Chapter  Google Scholar 

  9. Guerrero, C., Lera, I., Juiz, C.: Genetic algorithm for multi-objective optimization of container allocation in cloud architecture. J. Grid Comput. 16(1), 113–135 (2017). https://doi.org/10.1007/s10723-017-9419-x

    Article  Google Scholar 

  10. Hamdy, M., Nguyen, A.T., Hensen, J.L.M.: A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems. Energy Build. 121, 57–71 (2016). https://doi.org/10.1016/j.enbuild.2016.03.035

    Article  Google Scholar 

  11. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Performance comparison of NSGA-II and NSGA-III on various many-objective test problems. In: 2016 IEEE Congress on Evolutionary Computation, pp. 3045–3052. IEEE (2016)

    Google Scholar 

  12. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)

    Article  Google Scholar 

  13. Maghawry, A., Hodhod, R., Omar, Y., Kholief, M.: An approach for optimizing multi-objective problems using hybrid genetic algorithms. Soft. Comput. 25(1), 389–405 (2020). https://doi.org/10.1007/s00500-020-05149-3

    Article  Google Scholar 

  14. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers (1999)

    Google Scholar 

  15. Pimenta, A., Camargo, H.: NSGA-DO: non-dominated sorting genetic algorithm distance oriented. In: IEEE International Conference Fuzzy System, pp. 1–8 (2015). https://doi.org/10.1109/FUZZ-IEEE.2015.7338080

  16. Saborido, R., Ruiz, A.B., Bermúdez, J.D., Vercher, E., Luque, M.: Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Appl. Soft Comput. 39, 48–63 (2016). https://doi.org/10.1016/j.asoc.2015.11.005

    Article  MATH  Google Scholar 

  17. Seada, H., Deb, K.: U-NSGA-III: a unified evolutionary optimization procedure for single, multiple, and many objectives: proof-of-principle results. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 34–49. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_3

    Chapter  Google Scholar 

  18. Priya, V., Umamaheswari, K.: Enhanced continuous and discrete multi objective particle swarm optimization for text summarization. Clust. Comput. 22(1), 229–240 (2018). https://doi.org/10.1007/s10586-018-2674-1

    Article  Google Scholar 

  19. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945). https://doi.org/10.2307/3001968

    Article  Google Scholar 

  20. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.1162/106365600568202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matheus Giovanni Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Machado, J.G., Pires, M.G., Bertoni, F.C., de Macedo Pimenta, A.H., de Arruda Camargo, H. (2021). A Modified NSGA-DO for Solving Multiobjective Optimization Problems. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13073. Springer, Cham. https://doi.org/10.1007/978-3-030-91702-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91702-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91701-2

  • Online ISBN: 978-3-030-91702-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics