Skip to main content

An Enhanced TSP-Based Approach for Active Debris Removal Mission Planning

  • Conference paper
  • First Online:
Book cover Intelligent Systems (BRACIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13073))

Included in the following conference series:

Abstract

The extensive exploration of the Low Earth Orbit (LEO) has created a dangerous spacial environment, where space debris has threatened the feasibility of future operations. In this sense, Active Debris Removal (ADR) missions are required to clean up the space, deorbiting the debris with a spacecraft. ADR mission planning has been investigated in the literature by means of metaheuristic approaches, focused on maximizing the amount of removed debris given the constraints of the spacecraft. The state-of-the-art approach uses an inver-over and maximal open walk algorithms to solve this problem. However, that approach fails to deal with large instances and duration constraints. This work extends the state of the art, increasing its performance and modeling all the constraints. Experimental results evidence the improvements over the original approach, including the ability to run for scenarios with thousands of debris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barea, A., Urrutxua, H., Cadarso, L.: Large-scale object selection and trajectory planning for multi-target space debris removal missions. Acta Astronautica 170, 289–301 (2020). https://doi.org/10.1016/j.actaastro.2020.01.032

    Article  Google Scholar 

  2. Braun, V., et al.: Active debris removal of multiple priority targets. Adv. Space Res. 51(9), 1638–1648 (2013)

    Google Scholar 

  3. Cerf, M.: Multiple space debris collecting mission-debris selection and trajectory optimization. J. Optim. Theor. Appl. 156, 761–796 (2013). https://doi.org/10.1007/s10957-012-0130-6

    Article  MathSciNet  MATH  Google Scholar 

  4. Cerf, M.: Multiple space debris collecting mission: optimal mission planning. J. Optim. Theor. Appl. 167(1), 195–218 (2015). https://doi.org/10.1007/s10957-015-0705-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Koblick, D., et al.: Low thrust minimum time orbit transfer nonlinear optimization using impulse discretization via the modified picard-chebyshev method. Comput. Model. Eng. Sci. 111(1), 1–27 (2016). https://doi.org/10.3970/cmes.2016.111.001

  6. Edelbaum, T.N.: Propulsion requirements for controllable satellites. ARS J. 31(8), 1079–1089 (1961). https://doi.org/10.2514/8.5723

  7. Federici, L., Zavoli, A., Colasurdo, G.: A time-dependent tsp formulation for the design of an active debris removal mission using simulated annealing (2019)

    Google Scholar 

  8. Flood, M.M.: The traveling-salesman problem. Oper. Res. 4(1), 61–75 (1956). https://doi.org/10.1287/opre.4.1.61

    Article  MathSciNet  MATH  Google Scholar 

  9. Izzo, D., Getzner, I., Hennes, D., Simões, L.F.: Evolving solutions to tsp variants for active space debris removal. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1207–1214. GECCO ’15, ACM (2015)

    Google Scholar 

  10. Johnson, D., McGeoch, L.A.: The traveling salesman problem: A case study in local optimization (2008)

    Google Scholar 

  11. Kanazaki, M., Yamada, Y., Nakamiya, M.: Trajectory optimization of a satellite for multiple active space debris removal based on a method for the traveling serviceman problem. In: 2017 21st Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES), pp. 61–66 (2017). https://doi.org/10.1109/IESYS.2017.8233562

  12. Kessler, D.J., Cour-Palais, B.G.: Collision frequency of artificial satellites: the creation of a debris belt. J. Geophys. Res. Space Phys. 83(A6), 2637–2646 (1978). https://doi.org/10.1029/JA083iA06p02637

    Article  Google Scholar 

  13. Li, H., Baoyin, H.: Optimization of multiple debris removal missions using an evolving elitist club algorithm. IEEE Trans. Aerospace Electron. Syst. 56(1), 773–784 (2020). https://doi.org/10.1109/TAES.2019.2934373

    Article  Google Scholar 

  14. Li, H.Y., Baoyin, H.X.: Sequence optimization for multiple asteroids rendezvous via cluster analysis and probability-based beam search. Sci. Chin. Technol. Sci. 64(1), 122–130 (2020). https://doi.org/10.1007/s11431-020-1560-9

    Article  Google Scholar 

  15. Liou, J.C.: An active debris removal parametric study for leo environment remediation. Adv. Space Res. 47(11), 1865–1876 (2011). https://doi.org/10.1016/j.asr.2011.02.003

    Article  Google Scholar 

  16. Liou, J.C., Johnson, N.: Instability of the present leo satellite populations. Adv. Space Res. 41(7), 1046–1053 (2008). https://doi.org/10.1016/j.asr.2007.04.081

    Article  Google Scholar 

  17. Liou, J.C., Johnson, N., Hill, N.: Controlling the growth of future leo debris populations with active debris removal. Acta Astronautica 66(5), 648–653 (2010). https://doi.org/10.1016/j.actaastro.2009.08.005

    Article  Google Scholar 

  18. Liu, Y., Yang, J., Wang, Y., Pan, Q., Yuan, J.: Multi-objective optimal preliminary planning of multi-debris active removal mission in LEO. Sci. Chin. Inform. Sci. 60(7), 1–10 (2017). https://doi.org/10.1007/s11432-016-0566-7

    Article  Google Scholar 

  19. Madakat, D., Morio, J., Vanderpooten, D.: Biobjective planning of an active debris removal mission. Acta Astronautica 84, 182–188 (2013). https://doi.org/10.1016/j.actaastro.2012.10.038

    Article  Google Scholar 

  20. Seumahu, E.S.: Exploration of the Equatorial LEO Orbit for Communication and Other Applications, pp. 217–228. Springer, Netherlands, Dordrecht (1996). https://doi.org/10.1007/978-94-011-5692-9_25

  21. Stuart, J., Howell, K., Wilson, R.: Application of multi-agent coordination methods to the design of space debris mitigation tours. Adv. Space Res. 57(8), 1680–1697 (2016). https://doi.org/10.1016/j.asr.2015.05.002

    Article  Google Scholar 

  22. Tao, G., Michalewicz, Z.: Inver-over operator for the TSP. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 803–812. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056922

    Chapter  Google Scholar 

  23. Vallado, D., Crawford, P.: SGP4 Orbit Determination, pp. 18–21 (2008). https://doi.org/10.2514/6.2008-6770

  24. Wang, D., Li, L., Chen, L.: An efficient genetic algorithm for active space debris removal planning. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 514–521 (2019). https://doi.org/10.1109/CEC.2019.8790081

  25. Yang, J., Hou, X., Hu, Y.H., Liu, Y., Pan, Q.: A reinforcement learning scheme for active multi-debris removal mission planning with modified upper confidence bound tree search. IEEE Access 8, 108461–108473 (2020)

    Article  Google Scholar 

  26. Yang, J., Hu, Y.H., Liu, Y., Pan, Q.: A maximal-reward preliminary planning for multi-debris active removal mission in leo with a greedy heuristic method. Acta Astronautica 149, 123–142 (2018). https://doi.org/10.1016/j.actaastro.2018.05.040

    Article  Google Scholar 

  27. Zhang, T., Shen, H., Li, H., Li, J.: Ant Colony Optimization based design of multiple-target active debris removal mission (2018). https://doi.org/10.2514/6.2018-2412

Download references

Acknowledgements

We thank the anonymous reviewers for their constructive feedback. This work was partially supported by FAPERGS (grant 19/2551-0001277-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to João Batista Rodrigues Neto or Gabriel de Oliveira Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodrigues Neto, J.B., de Oliveira Ramos, G. (2021). An Enhanced TSP-Based Approach for Active Debris Removal Mission Planning. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13073. Springer, Cham. https://doi.org/10.1007/978-3-030-91702-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91702-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91701-2

  • Online ISBN: 978-3-030-91702-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics