Skip to main content

Improving a Genetic Clustering Approach with a CVI-Based Objective Function

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13073))

Included in the following conference series:

  • 546 Accesses

Abstract

Genetic-based clustering meta-heuristics are important bioinspired algorithms. One such technique, termed Genetic Algorithm for Decision Boundary Analysis (GADBA), was proposed to support Structural Health Monitoring (SHM) processes in bridges. GADBA is an unsupervised, non-parametric approach that groups data into natural clusters by means of a specialized objective function. Albeit it allows a competent identification of damage indicators of SHM-related data, it achieves lackluster results on more general clustering scenarios. This study improves the objective function of GADBA based on a Cluster Validity Index (CVI) named Mutual Equidistant-scattering Criterion (MEC) to expand its applicability to any real-world problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alswaitti, M., Albughdadi, M., Isa, N.A.M.: Density-based particle swarm optimization algorithm for data clustering. ESWA 91, 170–186 (2018)

    Google Scholar 

  2. Armano, G., Farmani, M.R.: Multiobjective clustering analysis using particle swarm optimization. Expert Syst. Appl. 55, 184–193 (2016)

    Article  Google Scholar 

  3. Bayá, A.E., Larese, M.G., Namías, R.: Clustering stability for automated color image segmentation. Expert Syst. Appl. 86, 258–273 (2017)

    Article  Google Scholar 

  4. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. TSMC-B (1998)

    Google Scholar 

  5. Campello, R.: Generalized external indexes for comparing data partitions with overlapping categories. Pattern Recogn. Lett. 31(9), 966–975 (2010)

    Article  Google Scholar 

  6. Cremona, C.: Big data and structural health monitoring. In: Challenges in Design and Construction of an Innovative and Sustainable Built Environment, 19th IABSE Congress Stockholm, pp. 1793–1801, September 2016

    Google Scholar 

  7. Daniel, W.W.: Applied nonparametric statistics. PWS-KENT, USA (1990)

    Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-ii. IEEE TEC 6(2), 182–197 (2002)

    Google Scholar 

  9. Diez, A., Khoa, N.L.D., Makki Alamdari, M., Wang, Y., Chen, F., Runcie, P.: A clustering approach for structural health monitoring on bridges. JCSHM (2016)

    Google Scholar 

  10. Dziopa, T.: Clustering validity indices evaluation with regard to semantic homogeneity. In: FedCSIS 2016, Gdańsk, Poland, 11–14 September 2016, pp. 3–9 (2016)

    Google Scholar 

  11. Esfandian, N., Razzazi, F., Behrad, A.: A clustering based feature selection method in spectro-temporal domain for speech recognition. EAAI 25(6), 1194–1202 (2012)

    Google Scholar 

  12. Flexa, C., Santos, R., Gomes, W., Sales, C., Costa, J.C.: Mutual equidistant-scattering criterion: a new index for crisp clustering. ESWA 128, 225–245 (2019)

    Google Scholar 

  13. Fränti, P., Sieranoja, S.: K-means properties on six clustering benchmark datasets. Appl. Intell. 48(12), 4743–4759 (2018)

    Article  Google Scholar 

  14. Fumeo, E., Oneto, L., Anguita, D.: Condition based maintenance in railway transportation systems based on big data streaming analysis. PCS 53, 437–446 (2015)

    Google Scholar 

  15. Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manage. 35(2), 137–144 (2015)

    Article  Google Scholar 

  16. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. IS 180(10), 2044–2064 (2010)

    Google Scholar 

  17. Gardiner, A., Aasheim, C., Rutner, P., Williams, S.: Skill requirements in big data: a content analysis of job advertisements. JCIF 58(4), 374–384 (2018)

    Google Scholar 

  18. Gil, D., Songi, I.Y.: Modeling and management of big data: challenges and opportunities. Futur. Gener. Comput. Syst. 63, 96–99 (2016)

    Article  Google Scholar 

  19. Güngör, E., Özmen, A.: Distance and density based clustering algorithm using gaussian Kernel. Expert Syst. Appl. 69, 10–20 (2017)

    Article  Google Scholar 

  20. Islam, M.Z., Estivill-Castro, V., Rahman, M.A., Bossomaier, T.: Combining k-means and a genetic algorithm through a novel arrangement of genetic operators for high quality clustering. Expert Syst. Appl. 91, 402–417 (2018)

    Article  Google Scholar 

  21. Jain, A.K.: Data clustering: 50 years beyond k-means. PRL 31(8), 651–666 (2010)

    Article  Google Scholar 

  22. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika, pp. 241–254 (1967)

    Google Scholar 

  23. Langone, R., Reynders, E., Mehrkanoon, S., Suykens, J.A.: Automated structural health monitoring based on adaptive kernel spectral clustering. In: MSSP (2017)

    Google Scholar 

  24. Lingras, P., Chen, M., Miao, D.: Qualitative and quantitative combinations of crisp and rough clustering schemes using dominance relations. In: IJAR, pp. 238–258 (2014)

    Google Scholar 

  25. Lucasius, C., Dane, A., Kateman, G.: On k-medoid clustering of large data sets with the aid of a genetic algorithm: background, feasiblity and comparison. Anal. Chim. Acta 282(3), 647–669 (1993)

    Article  Google Scholar 

  26. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: BSMSP, vol. 1, pp. 281–297. University of California Press (1967)

    Google Scholar 

  27. Mary, S.A.L., Sivagami, A.N., Rani, M.U.: Cluster validity measures dynamic clustering algorithms. ARPN J. Eng. Appl. Sci. 10(9), 4009–4012 (2015)

    Google Scholar 

  28. Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recogn. 33(9), 1455–1465 (2000)

    Article  Google Scholar 

  29. McAfee, A., Brynjolfsson, E.: Big data: the management revolution (2012)

    Google Scholar 

  30. Mclachlan, G., Basford, K.: Mixture Models: Inference and Applications to Clustering, vol. 38, January 1988

    Google Scholar 

  31. Moulavi, D., Jaskowiak, P.A., Campello, R.J.G.B., Zimek, A., Sander, J.: Density-based clustering validation. In: 14th SIAM ICDM, Philadelphia, PA (2014)

    Google Scholar 

  32. Pagnuco, I.A., Pastore, J.I., Abras, G., Brun, M., Ballarin, V.L.: Analysis of genetic association using hierarchical clustering and cluster validation indices. Genomics 109(5), 438–445 (2017)

    Article  Google Scholar 

  33. Rubio, E., Castillo, O., Valdez, F., Melin, P., Gonzalez, C.I., Martinez, G.: An extension of the fuzzy possibilistic clustering algorithm using type-2 fuzzy logic techniques. Adv. Fuzzy Sys. 2017, 7094046 (2017)

    Google Scholar 

  34. Salvador, S., Chan, P.: Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms. In: 16th IEEE ICTAI, USA (2004)

    Google Scholar 

  35. Silva, J.A., Hruschka, E.R., Gama, J.: An evolutionary algorithm for clustering data streams with a variable number of clusters. ESWA 67, 228–238 (2017)

    Google Scholar 

  36. Silva, M., Santos, A., Figueiredo, E., Santos, R., Sales, C., Costa, J.C.W.A.: A novel unsupervised approach based on a genetic algorithm for structural damage detection in bridges. Eng. Appl. Artif. Intell. 52(C), 168–180 (2016)

    Google Scholar 

  37. Silva, M., Santos, A., Santos, R., Figueiredo, E., Sales, C., Costa, J.C.: Agglomerative concentric hypersphere clustering applied to structural damage detection. Mech. Syst. Signal Process. 92, 196–212 (2017)

    Article  Google Scholar 

  38. Ultsch, A.: Clustering with SOM: U*C. In: Proceedings of Workshop on Self-organizing Maps, pp. 75–82, January 2005

    Google Scholar 

  39. Wu, K.L., Yang, M.S.: Alternative c-means clustering algorithms. Pattern Recogn. 35, 2267–2278 (2002)

    Article  Google Scholar 

  40. Wu, K.L., Yang, M.S.: A cluster validity index for fuzzy clustering. PRL (2005)

    Google Scholar 

  41. Xu, R., Wunsch, D., II.: Survey of clustering algorithms. TNN 16(3), 645–678 (2005)

    Google Scholar 

  42. Yang, C.L., Kuo, R., Chien, C.H., Quyen, N.T.P.: Non-dominated sorting genetic algorithm using fuzzy membership chromosome for categorical data clustering. Appl. Soft Comput. 30, 113–122 (2015)

    Article  Google Scholar 

  43. Zhao, Q.: Cluster Validity in Clustering Methods. Ph.D. thesis, UEF, June 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caio Flexa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Flexa, C., Gomes, W., Moreira, I., Santos, R., Sales, C., Silva, M. (2021). Improving a Genetic Clustering Approach with a CVI-Based Objective Function. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13073. Springer, Cham. https://doi.org/10.1007/978-3-030-91702-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91702-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91701-2

  • Online ISBN: 978-3-030-91702-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics