Skip to main content

Online Selection of Heuristic Operators with Deep Q-Network: A Study on the HyFlex Framework

  • Conference paper
  • First Online:
Book cover Intelligent Systems (BRACIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13073))

Included in the following conference series:

  • 609 Accesses

Abstract

General and adaptive strategies have been a highly pursued goal of the optimization community, due to the domain-dependent set of configurations (operators and parameters) that is usually required for achieving high quality solutions. This work investigates a Deep Q-Network (DQN) selection strategy under an online selection Hyper-Heuristic algorithm and compares it with two state-of-the-art Multi-Armed Bandit (MAB) approaches. We conducted the experiments on all six problem domains from the HyFlex Framework. With our definition of state representation and reward scheme, the DQN was able to quickly identify the good and bad operators, which resulted on better performance than the MAB strategies on the problem instances that a more exploitative behavior deemed advantageous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.asap.cs.nott.ac.uk/external/chesc2011/.

References

  1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002)

    Article  Google Scholar 

  2. Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)

    Article  Google Scholar 

  3. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A Classification of Hyper-heuristic Approaches, pp. 449–468. Springer, US, Boston, MA (2010). https://doi.org/10.1007/978-1-4419-1665-5_15

  4. Buzdalova, A., Kononov, V., Buzdalov, M.: Selecting evolutionary operators using reinforcement learning: initial explorations. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1033–1036 (2014)

    Google Scholar 

  5. DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 913–920. GECCO ’08, Association for Computing Machinery, New York, NY, USA (2008)

    Google Scholar 

  6. Dantas, A., Rego, A.F.D., Pozo, A.: Using deep q-network for selection hyper-heuristics. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1488–1492. GECCO ’21, Association for Computing Machinery, New York, NY, USA (2021)

    Google Scholar 

  7. Fialho, Á.: Adaptive Operator Selection for Optimization. Université Paris Sud - Paris XI (Dec, Theses (2010)

    Google Scholar 

  8. Handoko, S.D., Nguyen, D.T., Yuan, Z., Lau, H.C.: Reinforcement learning for adaptive operator selection in memetic search applied to quadratic assignment problem. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 193–194. GECCO Comp ’14, Association for Computing Machinery, New York, NY, USA (2014)

    Google Scholar 

  9. Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M., Talbi, E.G.: Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art. European Journal of Operational Research (2021)

    Google Scholar 

  10. Li, K., Fialho, Á., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 18(1), 114–130 (2014)

    Article  Google Scholar 

  11. Mosadegh, H., Ghomi, S.F., Süer, G.A.: Stochastic mixed-model assembly line sequencing problem: Mathematical modeling and q-learning based simulated annealing hyper-heuristics. Eur. J. Oper. Res. 282(2), 530–544 (2020)

    Article  MathSciNet  Google Scholar 

  12. Ochoa, G., et al.: HyFlex: A Benchmark Framework for Cross-domain Heuristic Search, vol. 7245, pp. 136–147 (2012)

    Google Scholar 

  13. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  14. Puterman, M.L.: Chapter 8 markov decision processes. In: Handbooks in Operations Research and Management Science, Stochastic Models, vol. 2, pp. 331–434. Elsevier (1990)

    Google Scholar 

  15. Sharma, M., Komninos, A., López-Ibáñez, M., Kazakov, D.: Deep reinforcement learning based parameter control in differential evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 709–717 (2019)

    Google Scholar 

  16. Soria-Alcaraz, J.A., Ochoa, G., Sotelo-Figeroa, M.A., Burke, E.K.: A methodology for determining an effective subset of heuristics in selection hyper-heuristics. Eur. J. Oper. Res. 260(3), 972–983 (2017)

    Article  MathSciNet  Google Scholar 

  17. Sutton, R.S., Barto, A.G.: Reinforcement Learning, Second Edition: An Introduction. MIT Press (2018)

    Google Scholar 

  18. Teng, T.-H., Handoko, S.D., Lau, H.C.: Self-organizing neural network for adaptive operator selection in evolutionary search. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 187–202. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3_13

  19. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Dantas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dantas, A., Pozo, A. (2021). Online Selection of Heuristic Operators with Deep Q-Network: A Study on the HyFlex Framework. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13073. Springer, Cham. https://doi.org/10.1007/978-3-030-91702-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91702-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91701-2

  • Online ISBN: 978-3-030-91702-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics