Skip to main content

A Comparative Study on Concept Drift Detectors for Regression

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13073))

Abstract

Context: in the field of machine learning models are trained to learn from data, however often the context at which a model is deployed changes, degrading the performances of trained models and giving rise to a problem called Concept Drift (CD), which is a change in data distribution. Motivation: CD has attracted attention in machine learning literature, with works proposing modification to well-known algorithms’ structures, ensembles, online learning and drift detection, but most of the CD literature regards classification, while regression drift is still poorly explored. Objective: The goal of this work is to perform a comparative study of CD detectors in the context of regression. Results: we found that (i) PH, KSWIN and EDDM showed higher detection averages; (ii) the base learner has a strong impact in CD detection and (iii) the rate at which CD happens also affects the detection process. Conclusion: our experiments were executed in a framework that can easily be extended to include new CD detectors and base learners, allowing future studies to use it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/Marilia-Lima/Framework-Detectors-Concept-Drift.

References

  1. de Almeida, R., Goh, Y.M., Monfared, R., Steiner, M.T.A., West, A.: An ensemble based on neural networks with random weights for online data stream regression. Soft Comput., 1–21 (2019)

    Google Scholar 

  2. Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno, R.: Early drift detection method. In: Fourth International Workshop on Knowledge Discovery from Data Streams, vol. 6, pp. 77–86 (2006)

    Google Scholar 

  3. Batra, M., Agrawal, R.: Comparative analysis of decision tree algorithms. In: Panigrahi, B.K., Hoda, M.N., Sharma, V., Goel, S. (eds.) Nature Inspired Computing. AISC, vol. 652, pp. 31–36. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6747-1_4

    Chapter  Google Scholar 

  4. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448. SIAM (2007)

    Google Scholar 

  5. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  6. Duffy, N., Helmbold, D.: Boosting methods for regression. Mach. Learn. 47(2), 153–200 (2002)

    Article  Google Scholar 

  7. Frias-Blanco, I., del Campo-Ávila, J., Ramos-Jimenez, G., Morales-Bueno, R., Ortiz-Diaz, A., Caballero-Mota, Y.: Online and non-parametric drift detection methods based on Hoeffding’s bounds. IEEE Trans. Knowl. Data Eng. 27(3), 810–823 (2014)

    Article  Google Scholar 

  8. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29

    Chapter  Google Scholar 

  9. Gonçalves Jr., P.M., de Carvalho Santos, S.G., Barros, R.S., Vieira, D.C.: A comparative study on concept drift detectors. Expert Syst. Appl. 41(18), 8144–8156 (2014)

    Google Scholar 

  10. Mastelini, S.M., de Leon Ferreira de Carvalho, A.C.P.: 2CS: correlation-guided split candidate selection in Hoeffding tree regressors. In: Cerri, R., Prati, R.C. (eds.) BRACIS 2020. LNCS (LNAI), vol. 12320, pp. 337–351. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61380-8_23

    Chapter  Google Scholar 

  11. Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: a multi-output streaming framework. J. Mach. Learn. Res. 19(72), 1–5 (2018). http://jmlr.org/papers/v19/18-251.html

  12. Oikarinen, E., Tiittanen, H., Henelius, A., Puolamäki, K.: Detecting virtual concept drift of regressors without ground truth values. Data Min. Knowl. Discov. 35(3), 726–747 (2021). https://doi.org/10.1007/s10618-021-00739-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Osojnik, A., Panov, P., Džeroski, S.: Tree-based methods for online multi-target regression. J. Intell. Inf. Syst. 50(2), 315–339 (2017). https://doi.org/10.1007/s10844-017-0462-7

    Article  MATH  Google Scholar 

  14. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)

    Article  MathSciNet  Google Scholar 

  15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Raab, C., Heusinger, M., Schleif, F.M.: Reactive soft prototype computing for concept drift streams. Neurocomputing 416, 340–351 (2020)

    Article  Google Scholar 

  17. dos Santos, V.M.G., de Mello, R.F., Nogueira, T., Rios, R.A.: Quantifying temporal novelty in social networks using time-varying graphs and concept drift detection. In: Cerri, R., Prati, R.C. (eds.) BRACIS 2020. LNCS (LNAI), vol. 12320, pp. 650–664. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61380-8_44

    Chapter  Google Scholar 

  18. Soares, S.G., Araújo, R.: An on-line weighted ensemble of regressor models to handle concept drifts. Eng. Appl. Artif. Intell. 37, 392–406 (2015)

    Article  Google Scholar 

  19. Valença, M.: Fundamentos das redes neurais: exemplos em java. Olinda, Pernambuco: Editora Livro Rápido (2010)

    Google Scholar 

  20. Xu, H., Caramanis, C., Mannor, S.: Robust regression and lasso. IEEE Trans. Inf. Theory 56(7), 3561–3574 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marília Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lima, M., Filho, T.S., de A. Fagundes, R.A. (2021). A Comparative Study on Concept Drift Detectors for Regression. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13073. Springer, Cham. https://doi.org/10.1007/978-3-030-91702-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91702-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91701-2

  • Online ISBN: 978-3-030-91702-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics