Skip to main content

On the Generalizations of the Choquet Integral for Application in FRBCs

  • Conference paper
  • First Online:
Book cover Intelligent Systems (BRACIS 2021)

Abstract

An effective way to cope with classification problems, among others, is by using Fuzzy Rule-Based Classification Systems (FRBCSs). These systems are composed by two main components, the Knowledge Base (KB) and the Fuzzy Reasoning Method (FRM). The FRM is responsible for performing the classification of new examples based on the information stored in the KB. A key point in the FRM is how the information given by the fired fuzzy rules is aggregated. Precisely, the aggregation function is the component that differs from the two most widely used FRMs in the specialized literature. In this paper we provide a revision of the literature discussing the generalizations of the Choquet integral that has been applied in the FRM of a FRBCS. To do so, we consider an analysis of different generalizations, by t-norms, copulas, and by F functions. Also, the main contributions of each generalization are discussed.

Supported by PNPD/CAPES (process. 464880/2019-00), FAPERGS (19/2551-0001279-9, 19/2551-0001660), CNPq (301618/2019-4), the Spanish Ministry of Science and Technology (TIN2016-77356-P, PID2019-108392GB I00 (AEI/10.13039/501100011033)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A fuzzy measure \(\mathfrak {m}\) is an increasing function on \(2^{N}\) such that \(\mathfrak {m} (\emptyset ) = 0\) and \(\mathfrak {m} (N) = 1\).

  2. 2.

    Examples of special CC-integrals were studied in [19, 20].

  3. 3.

    The function \(FNA2: [0,1]^2\) is defined, for all \(x,y \in [0,1]\) by \(F(0,y)= 0\), \(F(x,y) = \frac{x+y}{2}\) if \(0 < x \le y\) and \(F(x,y) = \min (\frac{x}{2},y)\), otherwise, which satisfies the conditions of [21, Theorems 2].

  4. 4.

    The considered datasets and the fuzzy classifier are available in KEEL repository. Available at https://www.keel.es.

References

  1. Alpaydin, E.: Introduction to Machine Learning, 2nd edn. MIT Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2005)

    Google Scholar 

  3. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  4. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kauffman, San Francisco (1993)

    Google Scholar 

  5. García-Pedrajas, N., García-Osorio, C., Fyfe, C.: Nonlinear boosting projections for ensemble construction. J. Mach. Learn. Res. 8, 1–33 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Ishibuchi, H., Nakashima, T., Nii, M.: Classification and Modeling with Linguistic Information Granules, Advanced Approaches to Linguistic Data Mining. Advanced Information Processing, Springer, Heidelberg (2005). https://doi.org/10.1007/b138232

    Book  MATH  Google Scholar 

  7. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  8. Unold, O.: Diagnosis of cardiac arrhythmia using fuzzy immune approach. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 265–274. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20267-4_28

    Chapter  Google Scholar 

  9. Vitoriano, B., Rodrígues, J.T., Tirado, G., Mart ín-Campo, F.J., Ortuão, M.T., Montero, J.: Intelligent decision-making models for disaster management. Hum. Ecol. Risk Assess. Int. J. 21(5), 1341–1360 (2015)

    Article  Google Scholar 

  10. Sanz, J.A., Bernardo, D., Herrera, F., Bustince, H., Hagras, H.: A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data. IEEE Trans. Fuzzy Syst. 23(4), 973–990 (2015)

    Article  Google Scholar 

  11. Goel, N., Sehgal, P.: Fuzzy classification of pre-harvest tomatoes for ripeness estimation - an approach based on automatic rule learning using decision tree. Appl. Soft Comput. 36, 45–56 (2015)

    Article  Google Scholar 

  12. Cordon, O., del Jesus, M.J., Herrera, F.: Analyzing the reasoning mechanisms in fuzzy rule based classification systems. Mathw. Soft Comput. 5(2–3), 321–332 (1998)

    MATH  Google Scholar 

  13. Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition. World Scientific Publishing Co., Inc., River Edge (1996)

    Book  Google Scholar 

  14. Barrenechea, E., Bustince, H., Fernandez, J., Paternain, D., Sanz, J.A.: Using the Choquet integral in the fuzzy reasoning method of fuzzy rule-based classification systems. Axioms 2(2), 208–223 (2013)

    Article  Google Scholar 

  15. Choquet, G.: “Theory of capacities,” Annales de l’Institut Fourier, vol. 5, pp. 131–295, (1953–1954)

    Google Scholar 

  16. Dimuro, G.P., et al.: The state-of-art of the generalizations of the Choquet integral: From aggregation and pre-aggregation to ordered directionally monotone functions. Inf. Fusion 57, 27–43 (2020)

    Article  Google Scholar 

  17. Dimuro, G., et al.: Pre-aggregation functions: construction and an application. IEEE Trans. Fuzzy Syst. 24(2), 260–272 (2016)

    Article  Google Scholar 

  18. Lucca, G., et al.: CC-integrals: Choquet-like copula-based aggregation functions and its application in fuzzy rule-based classification systems. Knowl-Based Syst. 119, 32–43 (2017)

    Article  Google Scholar 

  19. Dimuro, G.P., Lucca, G., Sanz, J.A., Bustince, H., Bedregal, B.: CMin-integral: a Choquet-like aggregation function based on the minimum t-norm for applications to fuzzy rule-based classification systems. In: Torra, V., Mesiar, R., De Baets, B. (eds.) AGOP 2017. AISC, vol. 581, pp. 83–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59306-7_9

    Chapter  MATH  Google Scholar 

  20. Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Bustince, H.: A proposal for tuning the the \(\alpha \) parameter in \(C_{\alpha }C\)-integrals for application in fuzzy rule-based classification systems. Nat. Comput. 19, 533–546 (2020)

    Article  MathSciNet  Google Scholar 

  21. Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Bustince, H., Mesiar, R.: CF-integrals: a new family of pre-aggregation functions with application to fuzzy rule-based classification systems. Inf. Sci. 435, 94–110 (2018)

    Article  Google Scholar 

  22. Lucca, G., Dimuro, G.P., Fernandez, J., Bustince, H., Bedregal, B., Sanz, J.A.: Improving the performance of fuzzy rule-based classification systems based on a nonaveraging generalization of CC-integrals named \(C_{F_1F_2}\)-integrals. IEEE Trans. Fuzzy Syst. 27(1), 124–134 (2019)

    Article  Google Scholar 

  23. Dimuro, G.P., et al.: Generalized cf1f2-integrals: from Choquet-like aggregation to ordered directionally monotone functions. Fuzzy Sets Syst. 378, 44–67 (2020)

    Article  Google Scholar 

  24. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15(1), 116–132 (1985)

    Google Scholar 

  25. Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. In: Proceedings of the Institution of Electrical Engineers, vol. 121, issue number 12, pp. 1585–1588 (1974)

    Google Scholar 

  26. Ishibuchi, H., Nakashima, T.: Effect of rule weights in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 9(4), 506–515 (2001)

    Article  Google Scholar 

  27. Cordón, O., del Jesus, M.J., Herrera, F.: A proposal on reasoning methods in fuzzy rule-based classification systems. Int. J. Approximate Reasoning 20(1), 21–45 (1999)

    Article  Google Scholar 

  28. Lucca, G., Sanz, J.A., Dimuro, J.A., Borges, E.N., Santos, H., Bustince, H.: Analyzing the performance of different fuzzy measures with generalizations of the Choquet integral in classification problems. In: 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6, June 2019

    Google Scholar 

  29. Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition. World Scientific, Singapore (1996)

    Book  Google Scholar 

  30. Alsina, C., Frank, M.J., Schweizer, B.: Associative Functions: Triangular Norms and Copulas. World Scientific Publishing Company, Singapore (2006)

    Book  Google Scholar 

  31. Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Directional monotonicity of fusion functions. Eur. J. Oper. Res. 244(1), 300–308 (2015)

    Article  MathSciNet  Google Scholar 

  32. Alcala-Fdez, J., Alcala, R., Herrera, F.: A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Trans. Fuzzy Syst. 19(5), 857–872 (2011)

    Article  Google Scholar 

  33. Alcalá-Fdez, J., et al.: KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 13(3), 307–318 (2009). https://doi.org/10.1007/s00500-008-0323-y

    Article  Google Scholar 

  34. Bustince, H., Fernandez, J., Mesiar, R., Montero, J., Orduna, R.: Overlap functions. Nonlinear Anal. Theory Methods Appl. 72(3–4), 1488–1499 (2010)

    Article  MathSciNet  Google Scholar 

  35. Dimuro, G.P., Bedregal, B.: On the laws of contraposition for residual implications derived from overlap functions. In: 2015 IEEE International Conference on Los Alamitos Fuzzy Systems (FUZZ-IEEE), pp. 1–7. IEEE, August 2015

    Google Scholar 

  36. Bustince, H., et al.: Ordered directionally monotone functions. justification and application. IEEE Trans. Fuzzy Syst. 1 (2017, In press). Corrected proof

    Google Scholar 

  37. Hühn, J., Hüllermeier, E.: FURIA: an algorithm for unordered fuzzy rule induction. Data Min. Knowl. Discov. 19(3), 293–319 (2009)

    Article  MathSciNet  Google Scholar 

  38. Sanz, J., Fernández, A., Bustince, H., Herrera, F.: IVTURS: a linguistic fuzzy rule-based classification system based on a new interval-valued fuzzy reasoning method with tuning and rule selection. IEEE Trans. Fuzzy Syst. 21(3), 399–411 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Lucca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lucca, G., Borges, E.N., Berri, R.A., Emmendorfer, L., Dimuro, G.P., Asmus, T.C. (2021). On the Generalizations of the Choquet Integral for Application in FRBCs. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13073. Springer, Cham. https://doi.org/10.1007/978-3-030-91702-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91702-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91701-2

  • Online ISBN: 978-3-030-91702-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics