Skip to main content

Encoding Physical Conditioning from Inertial Sensors for Multi-step Heart Rate Estimation

  • Conference paper
  • First Online:
  • 994 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13074))

Abstract

Inertial Measurement Unit (IMU) sensors are present in everyday devices such as smartphones and fitness watches. As a result, the array of health-related research and applications that tap onto this data has been growing, but little attention has been devoted to the prediction of an individual’s heart rate (HR) from IMU data, when undergoing a physical activity. Would that be even possible? If so, this could be used to design personalized sets of aerobic exercises, for instance. In this work, we show that it is viable to obtain accurate HR predictions from IMU data using Recurrent Neural Networks, provided only access to HR and IMU data from a short-lived, previously executed activity. We propose a novel method for initializing an RNN’s hidden state vectors, using a specialized network that attempts to extract an embedding of the physical conditioning (PCE) of a subject. We show that using a discriminator in the training phase to help the model learn whether two PCEs belong to the same individual further reduces the prediction error. We evaluate the proposed model when predicting the HR of 23 subjects performing a variety of physical activities from IMU data available in public datasets (PAMAP2, PPG-DaLiA). For comparison, we use as baselines the only model specifically proposed for this task and an adapted state-of-the-art model for Human Activity Recognition (HAR), a closely related task. Our method, PCE-LSTM, yields over 10% lower mean absolute error. We demonstrate empirically that this error reduction is in part due to the use of the PCE. Last, we use the two datasets (PPG-DaLiA, WESAD) to show that PCE-LSTM can also be successfully applied when photoplethysmography (PPG) sensors are available, outperforming the state-of-the-art deep learning baselines by more than 30%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We released all our code at https://github.com/davipeag/HeartRateRegression.

  2. 2.

    We avoid overfitting by using disjoint sets of subjects for training and validation.

  3. 3.

    Alternatively, losses’ weights can be set by hyperparameter tuning, but since we use a single subject for validation, we fixed the weights to (0.9, 0.1) to avoid overfitting to the validation subject.

References

  1. Reiss, A., Indlekofer, I., Schmidt, P., Van Laerhoven, K.: Deep PPG: large-scale heart rate estimation with convolutional neural networks. Sensors 19(14), 3079 (2019)

    Article  Google Scholar 

  2. Ludwig, M., Hoffmann, K., Endler, S., Asteroth, A., Wiemeyer, J.: Measurement, prediction, and control of individual heart rate responses to exercise-basics and options for wearable devices. Front. Physiol. 9, 778 (2018)

    Article  Google Scholar 

  3. Cheng, T.M., Savkin, A.V., Celler, B.G., Wang, L., Su, S.W.: A nonlinear dynamic model for heart rate response to treadmill walking exercise. In: IEEE IEMBS, pp. 2988–2991 (2007)

    Google Scholar 

  4. Hunt, K.J., Fankhauser, S.E.: Heart rate control during treadmill exercise using input-sensitivity shaping for disturbance rejection of very-low-frequency heart rate variability. Biomed. Signal Process. Control 30, 31–42 (2016)

    Google Scholar 

  5. Mohammad, S., Guerra, T.M., Grobois, J.M., Hecquet, B.: Heart rate control during cycling exercise using Takagi-Sugeno models. IFAC Proc. 44(1), 12783–12788 (2011)

    Google Scholar 

  6. Zhang, H., Wen, B., Liu, J.: The prediction of heart rate during running using Bayesian combined predictor. In: IEEE IWCMC, pp. 981–986 (2018)

    Google Scholar 

  7. Xiao, F., Yuchi, M., Ding, M., Jo, J.: A research of heart rate prediction model based on evolutionary neural network. In: IEEE ICBMI, pp. 304–307 (2011)

    Google Scholar 

  8. Yuchi, M., Jo, J.: Heart rate prediction based on physical activity using feedforwad neural network. In: IEEE ICHIT, pp. 344–350 (2008)

    Google Scholar 

  9. Mohajerin, N., Waslander, S.L.: Multistep prediction of dynamic systems with recurrent neural networks. 30(11), 3370–3383 (2019)

    Google Scholar 

  10. Salehizadeh, S., Dao, D., Bolkhovsky, J., Cho, C., Mendelson, Y., Chon, K.: A novel time-varying spectral filtering algorithm for reconstruction of motion artifact corrupted heart rate signals during intense physical activities using a wearable photoplethysmogram sensor. Sensors 16(1), 10 (2016)

    Article  Google Scholar 

  11. Schäck, T., Muma, M., Zoubir, A.M.: Computationally efficient heart rate estimation during physical exercise using photoplethysmographic signals. In: EUSIPCO, pp. 2478–2481 (2017)

    Google Scholar 

  12. Schmidt, P., Reiss, A., Duerichen, R., Marberger, C., Van Laerhoven, K.: Introducing WESAD, a multimodal dataset for wearable stress and affect detection. In: ACM ICMI, pp. 400–408, New York, NY, USA (2018). Association for Computing Machinery

    Google Scholar 

  13. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: IEEE ISWC, pp. 108–109, June 2012

    Google Scholar 

  14. van Gent, P., Farah, H., van Nes, N., van Arem, B.: Analysing noisy driver physiology real-time using off-the-shelf sensors: heart rate analysis software from the taking the fast lane project. J. Open Res. Softw. 7(1) (2019)

    Google Scholar 

  15. Eyobu, O.S., Han, D.S.: Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network. Sensors 18(9), 2892 (2018)

    Google Scholar 

  16. Rueda, F.M., Grzeszick, R., Fink, G.A., Feldhorst, S., Hompel, M.T.: Convolutional neural networks for human activity recognition using body-worn sensors. Informatics 5(2), 26 (2018)

    Google Scholar 

  17. Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Google Scholar 

  18. Jordao, A., Nazare Jr, A.C., Sena, J., Schwartz, W.R.: Human activity recognition based on wearable sensor data: a standardization of the state-of-the-art. arXiv e-prints, page arXiv:1806.05226, June 2018

  19. de Aguiar, D.P., Murai, F.: Am I fit for this physical activity? Neural embedding of physical conditioning from inertial sensors (2021)

    Google Scholar 

  20. Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recurrent models for human activity recognition using wearables. In: IJCAI, pp. 1533–1540 (2016)

    Google Scholar 

  21. Vaswani, A.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  22. Wu, N., Green, B., Ben, X., O’Banion, S.: Deep transformer models for time series forecasting: the influenza prevalence case. arXiv e-prints, page arXiv:2001.08317, January 2020

  23. Wang, J., Chen, Y., Hao, S., Peng, X., Lisha, H.: Deep learning for sensor-based activity recognition: a survey. Patt. Recogn. Lett. 119, 3–11 (2019)

    Article  Google Scholar 

  24. Zimmermann, H., Grothmann, R., Schaefer, A., Tietz, C.: 8 modeling large dynamical systems with dynamical consistent neural networks. In: Haykin, S., Principe, J.C., Sejnowski, T.J., McWhirter, J. (eds.) New Directions in Statistical Signal Processing: From Systems to Brains, chapter 8. The MIT Press (2006)

    Google Scholar 

  25. Wenke, S., Fleming, J.: Contextual recurrent neural networks (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davi Pedrosa de Aguiar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Aguiar, D.P., Murai, F. (2021). Encoding Physical Conditioning from Inertial Sensors for Multi-step Heart Rate Estimation. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13074. Springer, Cham. https://doi.org/10.1007/978-3-030-91699-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91699-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91698-5

  • Online ISBN: 978-3-030-91699-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics