Skip to main content

Ethics of AI: Do the Face Detection Models Act with Prejudice?

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13074))

Included in the following conference series:

Abstract

This work presents a study on an ethical issue in Artificial Intelligence related to the presence of racist biases by detecting faces in images. Our analyses were performed on a real-world system designed to detect fraud in public transportation in Salvador (Brazil). Our experiments were conducted by taking into account three steps. Firstly, we individually analyzed a sample of images and added specific labels related to the users’ gender and race. Then, we used well-defined detectors, based on different Convolutional Neural Network architectures, to find faces in the previously labeled images. Finally, we used statistical tests to assess whether or not there is some relation between the error rates and such labels. According to our results, we had noticed important biases, thus leading to higher error rates when images were taken from black people. We also noticed errors are more likely in both black men and women. Based on our conclusions, we recall the risk of deploying computational software that might affect minority groups that are historically neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bostrom, N.: Superintelligence: Paths, dangers, strategies (2014)

    Google Scholar 

  2. Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Conference on Fairness, Accountability and Transparency, pp. 77–91. PMLR (2018)

    Google Scholar 

  3. Casella, G., Berger, R.L.: Statistical inference. Cengage Learning (2021)

    Google Scholar 

  4. Castelvecchi, D.: Is facial recognition too biased to be let loose?, vol. 587. Nature, https://doi.org/10.1038/d41586-020-03186-4 (2020). https://www.nature.com/articles/d41586-020-03186-4

  5. Castelvecchi, D.: Mathematicians urge colleagues to boycott police work in wake of killings. Nature 582, 465 (2020). https://doi.org/10.1038/d41586-020-01874-9

    Article  Google Scholar 

  6. Farinella, G., Dugelay, J.L.: Demographic classification: do gender and ethnicity affect each other? In: 2012 International Conference on Informatics, Electronics & Vision (ICIEV), pp. 383–390. IEEE (2012)

    Google Scholar 

  7. Furl, N., Phillips, P., O’Toole, A.J.: Face recognition algorithms and the other-race effect: computational mechanisms for a developmental contact hypothesis. Cogn. Sci. 26(6), 797–815 (2002). https://doi.org/10.1016/S0364-0213(02)00084-8, https://www.sciencedirect.com/science/article/pii/S0364021302000848

  8. Grinstead, C.M., Snell, J.L.: Introduction to probability. Am. Math. Soc. (2012)

    Google Scholar 

  9. Haykin, S.: Neural Networks: A Comprehensive Foundation, 1st edn. Prentice Hall PTR, Upper Saddle River (1994)

    MATH  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Jain, V., Learned-Miller, E.: FDDB: a benchmark for face detection in unconstrained settings. Technical report, UMass Amherst technical report (2010)

    Google Scholar 

  12. Karkkainen, K., Joo, J.: FairFace: face attribute dataset for balanced race, gender, and age for bias measurement and mitigation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1548–1558, January 2021

    Google Scholar 

  13. Klare, B.F., Burge, M.J., Klontz, J.C., Vorder Bruegge, R.W., Jain, A.K.: Face recognition performance: role of demographic information. IEEE Trans. Inf. Foren. Secur. 7(6), 1789–1801 (2012). https://doi.org/10.1109/TIFS.2012.2214212

    Article  Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2323 (1998)

    Article  Google Scholar 

  15. Najibi, A.: Racial discrimination in face recognition technology. 24, October 2020. https://sitn.hms.harvard.edu/flash/2020/racial-discrimination-in-face-recognition-technology

  16. Phillips, P.J., Jiang, F., Narvekar, A., Ayyad, J., O’Toole, A.J.: An other-race effect for face recognition algorithms. ACM Trans. Appl. Percept. (TAP) 8(2), 1–11 (2011)

    Article  Google Scholar 

  17. Raji, I.D., Gebru, T., Mitchell, M., Buolamwini, J., Lee, J., Denton, E.: Saving face: investigating the ethical concerns of facial recognition auditing. https://doi.org/10.1145/3375627.3375820 (2020)

  18. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  20. Snow, B.J.: Amazon’s face recognition falsely matched 28 members of congress with mugshots. 26, July 2018 (June 2018), technology & Civil Liberties Attorney, ACLU of Northern California

    Google Scholar 

  21. Wang, M., Deng, W., Hu, J., Tao, X., Huang, Y.: Racial faces in the wild: reducing racial bias by information maximization adaptation network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 692–702 (2019)

    Google Scholar 

  22. Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Patt. Anal. Mach. Intell. 24(1), 34–58 (2002)

    Article  Google Scholar 

  23. Yang, S., Luo, P., Loy, C.C., Tang, X.: From facial parts responses to face detection: a deep learning approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3676–3684 (2015)

    Google Scholar 

  24. Yang, S., Luo, P., Loy, C.C., Tang, X.: WIDER FACE: a face detection benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  25. Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Technical report. MSR-TR-2010-66, June 2010. https://www.microsoft.com/en-us/research/publication/a-survey-of-recent-advances-in-face-detection/

  26. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by CAPES (Coordination for the Improvement of Higher Education Personnel – Brazilian Federal Government Agency). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. Finally, we also thank the company Integra, responsible for the public transportation in Salvador, for support this work. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of CAPES, NVIDIA, and Integra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Vinícius Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferreira, M.V., Almeida, A., Canario, J.P., Souza, M., Nogueira, T., Rios, R. (2021). Ethics of AI: Do the Face Detection Models Act with Prejudice?. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13074. Springer, Cham. https://doi.org/10.1007/978-3-030-91699-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91699-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91698-5

  • Online ISBN: 978-3-030-91699-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics