Skip to main content

Weapon Engagement Zone Maximum Launch Range Estimation Using a Deep Neural Network

  • Conference paper
  • First Online:
Book cover Intelligent Systems (BRACIS 2021)

Abstract

This work investigates the use of a Deep Neural Network (DNN) to perform an estimation of the Weapon Engagement Zone (WEZ) maximum launch range. The WEZ allows the pilot to identify an airspace in which the available missile has a more significant probability of successfully engaging a particular target, i.e., a hypothetical area surrounding an aircraft in which an adversary is vulnerable to a shot. We propose an approach to determine the WEZ of a given missile using 50,000 simulated launches in variate conditions. These simulations are used to train a DNN that can predict the WEZ when the aircraft finds itself on different firing conditions, with a coefficient of determination of 0.99. It provides another procedure concerning preceding research since it employs a non-discretized model, i.e., it considers all directions of the WEZ at once, which has not been done previously. Additionally, the proposed method uses an experimental design that allows for fewer simulation runs, providing faster model training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Air Land Sea Application Center: Brevity: Multi-Service Tactics, Techniques, and Procedures for Multi-Service Brevity Codes (2020)

    Google Scholar 

  2. Alkaher, D., Moshaiov, A.: Dynamic-escape-zone to avoid energy-bleeding coasting missile. J. Guidance Control Dyn. 38(10), 1908–1921 (2015)

    Article  Google Scholar 

  3. Bengio, Y., Goodfellow, I., Courville, A.: Deep learning, vol. 1. MIT press Massachusetts, USA (2017)

    MATH  Google Scholar 

  4. Birkmire, B., Gallagher, J.: Air-to-air missile maximum launch range modeling using a multilayer perceptron. In: AIAA Modeling and Simulation Technologies Conference, p. 4942 (2012)

    Google Scholar 

  5. Birkmire, B.M.: Weapon engagement zone maximum launch range approximation using a multilayer perceptron. Master’s thesis, Wright State University (2011)

    Google Scholar 

  6. Bock, S., Weiß, M.: A proof of local convergence for the Adam optimizer. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  7. Bonaccorso, G.: Machine Learning Algorithms. Packt Publishing Ltd, Birmingham (2017)

    Google Scholar 

  8. Cai, G., Chen, B.M., Lee, T.H.: Coordinate Systems and Transformations. In: Unmanned Rotorcraft Systems, pp. 23–34. Springer, London (2011). https://doi.org/10.1007/978-0-85729-635-1_2

  9. Costa, A.N.: Sequential Optimization of Formation Flight Control Method Based on Artificial Potential Fields. Master’s Thesis, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil (2019)

    Google Scholar 

  10. Dantas, J.P.A., Costa, A.N., Geraldo, D., Maximo, M.R.A.O., Yoneyama, T.: Engagement decision support for beyond visual range air combat. In: 2021 Latin American Robotics Symposium (LARS), pp. 1–6 (2021), Accepted for publication

    Google Scholar 

  11. Dantas, J.P.A.: Apoio à decisão para o combate aéreo além do alcance visual: uma abordagem por redes neurais artificiais. Master’s Thesis, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil (2018)

    Google Scholar 

  12. Departament of Defense: Military Handbook: Missile Flight Simulation Part One: Surface-to-Air Missiles (MIL-HDBK-1211) (1995)

    Google Scholar 

  13. Deutsch, J.L., Deutsch, C.V.: Latin hypercube sampling with multidimensional uniformity. J. Stat. Planning Infer. 142(3), 763–772 (2012)

    Article  MathSciNet  Google Scholar 

  14. Farlik, J., Casar, J., Stary, V.: Simplification of missile effective coverage zone in air defence simulations. In: 2017 International Conference on Military Technologies (ICMT), pp. 733–737. IEEE (2017)

    Google Scholar 

  15. Hancock, P.A., Vincenzi, D.A., Wise, J.A., Mouloua, M.: Human Factors in Simulation and Training. CRC Press, Boca Raton (2008)

    Google Scholar 

  16. Hill, R.R., Miller, J.O., McIntyre, G.A.: Applications of discrete event simulation modeling to military problems. In: Proceeding of the 2001 Winter Simulation Conference (Cat. No. 01CH37304), vol. 1, pp. 780–788. IEEE (2001)

    Google Scholar 

  17. Homem-de-Mello, T., Bayraksan, G.: Monte carlo sampling-based methods for stochastic optimization. Surv. Oper. Res. Manage. Sci. 19(1), 56–85 (2014)

    MathSciNet  Google Scholar 

  18. Husslage, B.G., Rennen, G., Van Dam, E.R., Den Hertog, D.: Space-filling Latin hypercube designs for computer experiments. Optim. Eng. 12(4), 611–630 (2011)

    Article  Google Scholar 

  19. Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5(3), 299–314 (1996)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  21. Klee, H.: Simulation of Dynamic Systems with MATLAB and Simulink. CRC Press, Boca Raton (2018)

    Google Scholar 

  22. Kravchenko, M.: Future UI. https://br.pinterest.com/krava88/future-ui/. Accessed 06 Nov 2021

  23. Li, A., Meng, Y., He, Z.: Simulation research on new model of air-to-air missile attack zone. In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), vol. 1, pp. 1998–2002. IEEE (2020)

    Google Scholar 

  24. Noaman, D., Noaman, M., Mahir, D., Rami, A., Faiz, D., et al.: Boost-sustain missile motor performance with fixed predetermined coast time interval. Eur. J. Mol. Clin. Med. 7(2), 5070–5079 (2020)

    Google Scholar 

  25. Office of the Chairman of the Joint Chiefs of Staff, Washington DC: DOD Dictionary of Military and Associated Terms (2021)

    Google Scholar 

  26. Petneházi, G.: Recurrent neural networks for time series forecasting. arXiv preprint arXiv:1901.00069 (2019)

  27. Portrey, A.M., Schreiber, B., Winston, B.: The pairwise escape-g metric: a measure for air combat maneuvering performance. In: Proceedings of the Winter Simulation Conference, 2005. p. 8. IEEE (2005)

    Google Scholar 

  28. Priddy, K.L., Keller, P.E.: Artificial Neural Networks: an Introduction, vol. 68. SPIE Press, Bellingham (2005)

    Google Scholar 

  29. Yoon, K.S., Park, J.H., Kim, I.G., Ryu, K.S.: New modeling algorithm for improving accuracy of weapon launch acceptability region. In: 29th Digital Avionics Systems Conference, p. 6-D. IEEE (2010)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Finep (Reference no 2824/20). Takashi Yoneyama is partially funded by CNPq – National Research Council of Brazil through the grant 304134/2-18-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joao P. A. Dantas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dantas, J.P.A., Costa, A.N., Geraldo, D., Maximo, M., Yoneyama, T. (2021). Weapon Engagement Zone Maximum Launch Range Estimation Using a Deep Neural Network. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13074. Springer, Cham. https://doi.org/10.1007/978-3-030-91699-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91699-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91698-5

  • Online ISBN: 978-3-030-91699-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics