Skip to main content

Performance Analysis of YOLOv3 for Real-Time Detection of Pests in Soybeans

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2021)

Abstract

In this work, we evaluate the You Only Look Once (YOLOv3) architecture for real-time detection of insect pests in soybean. Soybean crop images were collected on different days, locations, and weather conditions between the phenological stages R1 to R6, considered the period of the high occurrence of soybean pests. For training and testing the neural network, we used 5-fold cross-validation analyzing four metrics to evaluate the classification results: precision, recall, F-score, and accuracy; and three metrics to evaluate the detection results: mean absolute error (MAE), root mean square error (RMSE) and coefficient of determination (R\(^2\)). The experimental results showed that the YOLOv3 architecture trained with batch size 32 leads to higher classification and detection rates than batch sizes 4 and 16. The results indicate that the evaluated architecture can support experts and farmers in monitoring pest control action levels in soybean fields.

We thank the Centro Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), NVIDIA Corporation for the graphics card donation, and the Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do estado de Mato Grosso do Sul (FUNDECT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    LabelImg is a graphical image annotation tool and label object bounding boxes in images.

References

  1. Hou, J., et al.: Association analysis of vegetable soybean quality traits with ssr markers. Plant Breed. 130(4), 444–449 (2011). https://doi.org/10.1111/j.1439-0523.2011.01852.x

    Article  Google Scholar 

  2. CONAB, Acompanhamento da safra brasileira grãos V. 8 - SAFRA 2020/21 - N. 3 - Terceiro levantamento (2020). https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos. ISSN: 2318–6852

  3. —, Acompanhamento da safra brasileira grãos V. 6 - SAFRA 2018/19 - N. 12 - Décimo segundo levantamento (2019). https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos/item/download/28484_9a9ee12328baa359b3708d64e774e5d8. ISSN 2318–6852

  4. —, Compêndio de estudos conab: Evolução dos custos de produção de soja no brasil, 2 (2016). https://www.conab.gov.br/institucional/publicacoes/compendio-de-estudos-da-conab/item/download/2512_c2638f76696e3b926ab22e93f9549d21. ISSN 2448–3710

  5. Tetila, E.C., Machado, B.B., Belete, N.A., Guimarães, D.A., Pistori, H.: Identification of soybean foliar diseases using unmanned aerial vehicle images. IEEE Geosci. Remote Sens. Lett 14(12), 2190–2194 (2017). https://doi.org/10.1109/LGRS.2017.2743715

    Article  Google Scholar 

  6. Hoffmann-Campo, C.B., Corrêa-Ferreira, B.S., Moscardi, F.: Soja: manejo integrado de insetos e outros Artrópodes-praga., Embrapa Soja (2012). http://www.cnpso.embrapa.br/artropodes/Capitulo9.pdf. ISBN 978-85-7035-139-5

  7. Tetila, E.C., Machado, B.B., Menezes, G.V., de Souza Belete, N.A., Astolfi, G., Pistori, H.: A deep-learning approach for automatic counting of soybean insect pests. IEEE Geosci. Remote Sens. Lett 17, 1–5 (2019). https://doi.org/10.1109/LGRS.2019.2954735

    Article  Google Scholar 

  8. Tetila, E.C.: Detecção e classificação de doenças e pragas da soja usando imagens de veículos aéreos não tripulados e técnicas de visão computacional. Ph.D. dissertation, Universidade Católica Dom Bosco (2019). http://repositorio.ufgd.edu.br/jspui/handle/prefix/2385

  9. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement (2018). CoRR, vol. abs/1804.02767, http://arxiv.org/abs/1804.02767

  10. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks (2015). CoRR, vol. abs/1506.01497, http://arxiv.org/abs/1506.01497

  11. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2020)

    Article  Google Scholar 

  12. Li, Y., Wang, H., Dang, L.M., Sadeghi-Niaraki, A., Moon, H.: Crop pest recognition in natural scenes using convolutional neural networks. Comput. Electron. Agric. 169,(2020). https://doi.org/10.1016/j.compag.2019.105174. ISSN 0168–1699

  13. Wang, F., Wang, R., Xie, C., Yang, P., Liu, L.: Fusing multi-scale context-aware information representation for automatic in-field pest detection and recognition. Comput. Electron. Agric. 169,(2020). https://doi.org/10.1016/j.compag.2020.105222. ISSN 0168–1699

  14. Mique, E.L., Palaoag, T.D.: Rice pest and disease detection using convolutional neural network. In: Proceedings of the 2018 International Conference on Information Science and System, Series ICISS ’18, pp. 147–151. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3209914.3209945. ISBN 9781450364218

  15. Wu, X., Zhan, C., Lai, Y., Cheng, M., Yang, J.: Ip102: a large-scale benchmark dataset for insect pest recognition. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8779–8788 (2019). https://doi.org/10.1109/CVPR.2019.00899

  16. Nam, N.T., Hung, P.D.: Pest detection on traps using deep convolutional neural networks. In: Proceedings of the 2018 International Conference on Control and Computer Vision, Series ICCCV ’18, pp. 33–38. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3232651.3232661

  17. Xia, D., Chen, P., Wang, B., Zhang, J., Xie, C.: Insect detection and classification based on an improved convolutional neural network. Sensors 18(12), 4169 (2018). https://doi.org/10.3390/s18124169. ISSN 1424–8220

  18. Cheng, X., Zhang, Y., Chen, Y., Wu, Y., Yue, Y.: Pest identification via deep residual learning in complex background. Comput. Electron. Agric. 141, 351–356 (2017). https://doi.org/10.1016/j.compag.2017.08.005

    Article  Google Scholar 

  19. Gutierrez, A., Ansuategi, A., Susperregi, L., Tubío, C., Rankić, I., Lenža, L.: A benchmarking of learning strategies for pest detection and identification on tomato plants for autonomous scouting robots using internal databases (2019). https://doi.org/10.1155/2019/5219471

  20. Liu, B., Hu, Z., Zhao, Y., Bai, Y., Wang, Y.: Recognition of pyralidae insects using intelligent monitoring autonomous robot vehicle in natural farm scene (2019). CoRR, vol. abs/1903.10827, http://arxiv.org/abs/1903.10827

  21. Deng, L., Wang, Y., Han, Z., Yu, R.: Research on insect pest image detection and recognition based on bio-inspired methods. Biosyst. Eng. 169, 139–148 (2018). https://doi.org/10.1016/j.biosystemseng.2018.02.008. ISSN 1537–5110

  22. Liu, T., Chen, W., Wu, W., Sun, C., Guo, W., Zhu, X.: Detection of aphids in wheat fields using a computer vision technique. Biosyst. Eng. 141, 82–93 (2016). https://doi.org/10.1016/j.biosystemseng.2015.11.005. ISSN 1537–5110

  23. Tetila, E.C.: INSECT12C-Dataset - Conjunto de Imagens de Insetos e outros Invertebrados da Cultura da Soja, UFGD (2021). http://evertontetila.ws.ufgd.edu.br/INSECT12C-Dataset.zip

  24. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  25. Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20. Curran Associates Inc. (2008). https://proceedings.neurips.cc/paper/2007/file/0d3180d672e08b4c5312dcdafdf6ef36-Paper.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silveira, F.A.G.d., Tetila, E.C., Astolfi, G., Costa, A.B.d., Amorim, W.P. (2021). Performance Analysis of YOLOv3 for Real-Time Detection of Pests in Soybeans. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13074. Springer, Cham. https://doi.org/10.1007/978-3-030-91699-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91699-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91698-5

  • Online ISBN: 978-3-030-91699-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics