Abstract
In this work, we evaluate the You Only Look Once (YOLOv3) architecture for real-time detection of insect pests in soybean. Soybean crop images were collected on different days, locations, and weather conditions between the phenological stages R1 to R6, considered the period of the high occurrence of soybean pests. For training and testing the neural network, we used 5-fold cross-validation analyzing four metrics to evaluate the classification results: precision, recall, F-score, and accuracy; and three metrics to evaluate the detection results: mean absolute error (MAE), root mean square error (RMSE) and coefficient of determination (R\(^2\)). The experimental results showed that the YOLOv3 architecture trained with batch size 32 leads to higher classification and detection rates than batch sizes 4 and 16. The results indicate that the evaluated architecture can support experts and farmers in monitoring pest control action levels in soybean fields.
We thank the Centro Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), NVIDIA Corporation for the graphics card donation, and the Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do estado de Mato Grosso do Sul (FUNDECT).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
LabelImg is a graphical image annotation tool and label object bounding boxes in images.
References
Hou, J., et al.: Association analysis of vegetable soybean quality traits with ssr markers. Plant Breed. 130(4), 444–449 (2011). https://doi.org/10.1111/j.1439-0523.2011.01852.x
CONAB, Acompanhamento da safra brasileira grãos V. 8 - SAFRA 2020/21 - N. 3 - Terceiro levantamento (2020). https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos. ISSN: 2318–6852
—, Acompanhamento da safra brasileira grãos V. 6 - SAFRA 2018/19 - N. 12 - Décimo segundo levantamento (2019). https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos/item/download/28484_9a9ee12328baa359b3708d64e774e5d8. ISSN 2318–6852
—, Compêndio de estudos conab: Evolução dos custos de produção de soja no brasil, 2 (2016). https://www.conab.gov.br/institucional/publicacoes/compendio-de-estudos-da-conab/item/download/2512_c2638f76696e3b926ab22e93f9549d21. ISSN 2448–3710
Tetila, E.C., Machado, B.B., Belete, N.A., Guimarães, D.A., Pistori, H.: Identification of soybean foliar diseases using unmanned aerial vehicle images. IEEE Geosci. Remote Sens. Lett 14(12), 2190–2194 (2017). https://doi.org/10.1109/LGRS.2017.2743715
Hoffmann-Campo, C.B., Corrêa-Ferreira, B.S., Moscardi, F.: Soja: manejo integrado de insetos e outros Artrópodes-praga., Embrapa Soja (2012). http://www.cnpso.embrapa.br/artropodes/Capitulo9.pdf. ISBN 978-85-7035-139-5
Tetila, E.C., Machado, B.B., Menezes, G.V., de Souza Belete, N.A., Astolfi, G., Pistori, H.: A deep-learning approach for automatic counting of soybean insect pests. IEEE Geosci. Remote Sens. Lett 17, 1–5 (2019). https://doi.org/10.1109/LGRS.2019.2954735
Tetila, E.C.: Detecção e classificação de doenças e pragas da soja usando imagens de veículos aéreos não tripulados e técnicas de visão computacional. Ph.D. dissertation, Universidade Católica Dom Bosco (2019). http://repositorio.ufgd.edu.br/jspui/handle/prefix/2385
Redmon, J., Farhadi, A.: Yolov3: an incremental improvement (2018). CoRR, vol. abs/1804.02767, http://arxiv.org/abs/1804.02767
Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks (2015). CoRR, vol. abs/1506.01497, http://arxiv.org/abs/1506.01497
Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2020)
Li, Y., Wang, H., Dang, L.M., Sadeghi-Niaraki, A., Moon, H.: Crop pest recognition in natural scenes using convolutional neural networks. Comput. Electron. Agric. 169,(2020). https://doi.org/10.1016/j.compag.2019.105174. ISSN 0168–1699
Wang, F., Wang, R., Xie, C., Yang, P., Liu, L.: Fusing multi-scale context-aware information representation for automatic in-field pest detection and recognition. Comput. Electron. Agric. 169,(2020). https://doi.org/10.1016/j.compag.2020.105222. ISSN 0168–1699
Mique, E.L., Palaoag, T.D.: Rice pest and disease detection using convolutional neural network. In: Proceedings of the 2018 International Conference on Information Science and System, Series ICISS ’18, pp. 147–151. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3209914.3209945. ISBN 9781450364218
Wu, X., Zhan, C., Lai, Y., Cheng, M., Yang, J.: Ip102: a large-scale benchmark dataset for insect pest recognition. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8779–8788 (2019). https://doi.org/10.1109/CVPR.2019.00899
Nam, N.T., Hung, P.D.: Pest detection on traps using deep convolutional neural networks. In: Proceedings of the 2018 International Conference on Control and Computer Vision, Series ICCCV ’18, pp. 33–38. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3232651.3232661
Xia, D., Chen, P., Wang, B., Zhang, J., Xie, C.: Insect detection and classification based on an improved convolutional neural network. Sensors 18(12), 4169 (2018). https://doi.org/10.3390/s18124169. ISSN 1424–8220
Cheng, X., Zhang, Y., Chen, Y., Wu, Y., Yue, Y.: Pest identification via deep residual learning in complex background. Comput. Electron. Agric. 141, 351–356 (2017). https://doi.org/10.1016/j.compag.2017.08.005
Gutierrez, A., Ansuategi, A., Susperregi, L., Tubío, C., Rankić, I., Lenža, L.: A benchmarking of learning strategies for pest detection and identification on tomato plants for autonomous scouting robots using internal databases (2019). https://doi.org/10.1155/2019/5219471
Liu, B., Hu, Z., Zhao, Y., Bai, Y., Wang, Y.: Recognition of pyralidae insects using intelligent monitoring autonomous robot vehicle in natural farm scene (2019). CoRR, vol. abs/1903.10827, http://arxiv.org/abs/1903.10827
Deng, L., Wang, Y., Han, Z., Yu, R.: Research on insect pest image detection and recognition based on bio-inspired methods. Biosyst. Eng. 169, 139–148 (2018). https://doi.org/10.1016/j.biosystemseng.2018.02.008. ISSN 1537–5110
Liu, T., Chen, W., Wu, W., Sun, C., Guo, W., Zhu, X.: Detection of aphids in wheat fields using a computer vision technique. Biosyst. Eng. 141, 82–93 (2016). https://doi.org/10.1016/j.biosystemseng.2015.11.005. ISSN 1537–5110
Tetila, E.C.: INSECT12C-Dataset - Conjunto de Imagens de Insetos e outros Invertebrados da Cultura da Soja, UFGD (2021). http://evertontetila.ws.ufgd.edu.br/INSECT12C-Dataset.zip
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20. Curran Associates Inc. (2008). https://proceedings.neurips.cc/paper/2007/file/0d3180d672e08b4c5312dcdafdf6ef36-Paper.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Silveira, F.A.G.d., Tetila, E.C., Astolfi, G., Costa, A.B.d., Amorim, W.P. (2021). Performance Analysis of YOLOv3 for Real-Time Detection of Pests in Soybeans. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13074. Springer, Cham. https://doi.org/10.1007/978-3-030-91699-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-91699-2_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91698-5
Online ISBN: 978-3-030-91699-2
eBook Packages: Computer ScienceComputer Science (R0)