Skip to main content

Quaternion-Valued Convolutional Neural Network Applied for Acute Lymphoblastic Leukemia Diagnosis

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2021)

Abstract

The field of neural networks has seen significant advances in recent years with the development of deep and convolutional neural networks. Although many of the current works address real-valued models, recent studies reveal that neural networks with hypercomplex-valued parameters can better capture, generalize, and represent the complexity of multidimensional data. This paper explores the quaternion-valued convolutional neural network application for a pattern recognition task from medicine, namely, the diagnosis of acute lymphoblastic leukemia. Precisely, we compare the performance of real-valued and quaternion-valued convolutional neural networks to classify lymphoblasts from the peripheral blood smear microscopic images. The quaternion-valued convolutional neural network achieved better or similar performance than its corresponding real-valued network but using only 34% of its parameters. This result confirms that quaternion algebra allows capturing and extracting information from a color image with fewer parameters.

This work was supported in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya, V., Kumar, P.: Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Med. Biol. Eng. Comput. 57(8), 1783–1811 (2019). https://doi.org/10.1007/s11517-019-01984-1

    Article  Google Scholar 

  2. Ahmed, N., Yigit, A., Isik, Z., Alpkocak, A.: Identification of leukemia subtypes from microscopic images using convolutional neural network. Diagnostics (Basel) 9(3) (2019). https://doi.org/10.3390/diagnostics9030104

  3. Aizenberg, I., Alexander, S., Jackson, J.: Recognition of blurred images using multilayer neural network based on multi-valued neurons. In: 2011 41st IEEE International Symposium on Multiple-Valued Logic, pp. 282–287 (2011)

    Google Scholar 

  4. Aizenberg, I., Gonzalez, A.: Image recognition using MLMVN and frequency domain features. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2018). https://doi.org/10.1109/IJCNN.2018.8489301

  5. Aljaboriy, S., Sjarif, N., Chuprat, S., Abduallah, W.: Acute lymphoblastic leukemia segmentation using local pixel information. Pattern Recogn. Lett. 125, 85–90 (2019). https://doi.org/10.1016/j.patrec.2019.03.024

  6. Arena, P., Fortuna, L., Muscato, G., Xibilia, M.G.: Multilayer perceptrons to approximate quaternion valued functions. Neural Netw. 10(2), 335–342 (1997). https://doi.org/10.1016/S0893-6080(96)00048-2

    Article  Google Scholar 

  7. Bayro-Corrochano, E., Lechuga-Gutiérrez, L., Garza-Burgos, M.: Geometric techniques for robotics and hmi: interpolation and haptics in conformal geometric algebra and control using quaternion spike neural networks. Robot. Auton. Syst. 104, 72–84 (2018)

    Article  Google Scholar 

  8. Bibi, N., Sikandar, M., Din, I.U., Almogren, A., Ali, S.: Iomt-based automated detection and classification of leukemia using deep learning. J. Healthc. Eng. (2020). https://doi.org/10.1155/2020/6648574

    Article  Google Scholar 

  9. Chen, B., Gao, Y., Xu, L., Hong, X., Zheng, Y., Shi, Y.Q.: Color image splicing localization algorithm by quaternion fully convolutional networks and superpixel-enhanced pairwise conditional random field. Math. Biosci. Eng. 6(16), 6907–6922 (2019). https://doi.org/10.3934/mbe.2019346

    Article  MathSciNet  MATH  Google Scholar 

  10. García-Retuerta, D., Casado-Vara, R., Martin-del Rey, A., De la Prieta, F., Prieto, J., Corchado, J.M.: Quaternion neural networks: state-of-the-art and research challenges. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds.) IDEAL 2020. LNCS, vol. 12490, pp. 456–467. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62365-4_43

    Chapter  Google Scholar 

  11. Gaudet, C.J.; Maida, A.: Deep quaternion networks. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2018)

    Google Scholar 

  12. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp. 249–256. PMLR, Chia Laguna Resort, Sardinia, Italy (13–15 May 2010). http://proceedings.mlr.press/v9/glorot10a.html

  13. Greenblatt, A., Mosquera-Lopez, C., Agaian, S.: Quaternion neural networks applied to prostate cancer Gleason grading. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1144–1149 (2013). https://doi.org/10.1109/SMC.2013.199

  14. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn (2018)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  16. Hirose, A.: Complex-Valued Neural Networks. Studies in Computational Intelligence, 2nd edn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27632-3

  17. Hirose, A., Yoshida, S.: Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence. IEEE Trans. Neural Netw. Learn. Syst. 23(4), 541–551 (2012). https://doi.org/10.1109/TNNLS.2012.2183613

    Article  Google Scholar 

  18. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018). https://doi.org/10.1109/CVPR.2018.00745

  19. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243

  20. Isokawa, T., Matsui, N., Nishimura, H.: Quaternionic neural networks: fundamental properties and applications. In: Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters, pp. 411–439 (2009)

    Google Scholar 

  21. Jha, K.K., Sekhar Dutta, H.: Mutual information based hybrid model and deep learning for acute lymphocytic Leukaemia detection in single cell blood smear images. Comput. Methods Program. Biomed. 179, 104987 (2019). https://doi.org/10.1016/j.cmpb.2019.104987

  22. Jin, L., Zhou, Y., Liu, H., Song, E.: Deformable quaternion Gabor convolutional neural network for color facial expression recognition. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 1696–1700 (2020). https://doi.org/10.1109/ICIP40778.2020.9191349

  23. Kasvi: Hematologia: Como é realizada a técnica de esfregaço de sangue? https://kasvi.com.br/esfregaco-de-sangue-hematologia/ (2021). Accessed 18 Feb 2021

  24. Kinugawa, K., Shang, F., Usami, N., Hirose, A.: Isotropization of quaternion-neural-network-based PolSAR adaptive land classification in Poincare-sphere parameter space. IEEE Geosci. Remote Sens. Lett. 15(8), 1234–1238 (2018). https://doi.org/10.1109/LGRS.2018.2831215

    Article  Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  26. Kumar, S., Mishra, S., Asthana, P.: Pragya: automated detection of acute leukemia using k-mean clustering algorithm. In: Bhatia, S.K., Mishra, K.K., Tiwari, S., Singh, V.K. (eds.) Advances in Computer and Computational Sciences, pp. 655–670. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-3773-3_64

    Chapter  Google Scholar 

  27. Kusamichi, H., Isokawa, T., Matsui, N., Ogawa, Y., Maeda, K.: A new scheme for color night vision by quaternion neural network. In: Proceedings of the 2nd International Conference on Autonomous Robots and Agents (ICARA 2004), pp. 101–106 (2004)

    Google Scholar 

  28. Labati, R.D., Piuri, V., Scotti, F.: All-idb: the acute lymphoblastic leukemia image database for image processing. In: 2011 18th IEEE International Conference on Image Processing (2011). https://doi.org/978-1-4577-1303-3

  29. Mandic, D.P., Goh, V.S.L.: Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models, vol. 59. Wiley, New York (2009)

    Book  Google Scholar 

  30. Matsui, N., Isokawa, T., Kusamichi, H., Peper, F., Nishimura, H.: Quaternion neural network with geometrical operators. J. Intell. Fuzzy Syst. 15(3), 149–164 (2004)

    MATH  Google Scholar 

  31. Mishra, S., Majhi, B., Sa, P.K.: Texture feature based classification on microscopic blood smear for acute lymphoblastic leukemia detection. Biomed. Sig. Process. Control 47, 303–311 (2019). https://doi.org/10.1016/j.bspc.2018.08.012

  32. NCI: Acute lymphoblastic leukemia. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/acute-lymphoblastic-leukemia (2021). Accessed 18 Feb 2021

  33. NCI: Lymphoblast. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/lymphoblast (2021). Accessed 18 Feb 2021

  34. NHS: Acute lymphoblastic leukemia diagnosis. https://www.nhs.uk/conditions/acute-lymphoblastic-leukaemia/diagnosis/ (2021). Accessed 18 Feb 2021

  35. Nitta, T.: On the critical points of the complex-valued neural network. In: Proceedings of the ICONIP 2002 9th International Conference on Neural Information Processing: Computational Intelligence for the E-Age, pp. 411–439. Singapore (2002)

    Google Scholar 

  36. Ogawa, T.: Neural network inversion for multilayer quaternion neural networks. Comput. Technol. Appl. 7, 73–82 (2016)

    Google Scholar 

  37. Onyekpe, U., Palade, V., Kanarachos, S., Christopoulos, S.R.: A quaternion gated recurrent unit neural network for sensor fusion. Information (2021). https://doi.org/10.3390/info12030117

  38. Parcollet, T., Morchid, M., Linarès, G.: A survey of quaternion neural networks. Artif. Intell. Rev. 53(4), 2957–2982 (2020). https://doi.org/10.1007/s10462-019-09752-1

    Article  Google Scholar 

  39. Parcollet, T., Morchid, M., Linarès, G.: Quaternion Convolutional Neural Networks for Heterogeneous Image Process. (2018). https://doi.org/arXiv:1811.02656v1

  40. Parcollet, T., et al.: Quaternion convolutional neural networks for end-to-end automatic speech recognition. In: Proceedings of the Interspeech 2018, pp. 22–26 (2018). https://doi.org/10.21437/Interspeech.2018-1898

  41. Pavllo, D., Feichtenhofer, C., Auli, M., Grangier, D.: Modeling human motion with quaternion-based neural networks. Int. J. Comput. Vis. 128(4), 855–872 (2019). https://doi.org/10.1007/s11263-019-01245-6

  42. Shafique, S., Tehsin, S.: Computer-aided diagnosis of acute lymphoblastic Leukaemia. Comput. Math. Methods Med. 2018, 6125289 (2018). https://doi.org/10.1155/2018/6125289

  43. Shang, F., Hirose, A.: Quaternion neural-network-based PolSAR land classification in Poincare-sphere-parameter space. IEEE Trans. Geosci. Remote Sens. 52, 5693–5703 (2014)

    Article  Google Scholar 

  44. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015)

    Google Scholar 

  45. Terwilliger, T., Abdul-Hay, M.J.B.C.J.: Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. (2017). https://doi.org/10.1038/bcj.2017.53

  46. Takahashi, K., Isaka, A., Fudaba, T., Hashimoto, M.: Remarks on quaternion neural network-based controller trained by feedback error learning. In: IEEE/SICE International Symposium on System Integration, pp. 875–880 (2017)

    Google Scholar 

  47. Takahashi, K., Takahashi, S., Cui, Y., Hashimoto, M.: Remarks on computational facial expression recognition from HOG features using quaternion multi-layer neural network. In: Mladenov, V., Jayne, C., Iliadis, L. (eds.) EANN 2014. CCIS, vol. 459, pp. 15–24. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11071-4_2

    Chapter  Google Scholar 

  48. Trabelsi, C., et al.: Deep complex networks (May 2017)

    Google Scholar 

  49. Tuba, M., Tuba, E.: Generative adversarial optimization (goa) for acute lymphocytic leukemia detection. Stud. Inf. Control 28, 245–254 (2019). https://doi.org/10.24846/v28i3y201901

    Article  Google Scholar 

  50. Vogado, L.H., Veras, R.M., Araujo, F.H., Silva, R.R., Aires, K.R.: Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification. Eng. Appl. Artif. Intell. 72, 415–422 (2018). https://doi.org/10.1016/j.engappai.2018.04.024

  51. Zhu, X., Xu, Y., Xu, H., Chen, C.: Quaternion convolutional neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 645–661. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_39

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Eduardo Valle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Granero, M.A., Hernández, C.X., Valle, M.E. (2021). Quaternion-Valued Convolutional Neural Network Applied for Acute Lymphoblastic Leukemia Diagnosis. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13074. Springer, Cham. https://doi.org/10.1007/978-3-030-91699-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91699-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91698-5

  • Online ISBN: 978-3-030-91699-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics