Skip to main content

Time-Dependent Item Embeddings for Collaborative Filtering

  • Conference paper
  • First Online:
  • 976 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13074))

Abstract

Collaborative filtering recommender systems are essential tools in many modern applications. Their main advantage compared with the alternatives is that they require only a matrix of user-item interactions to recommend a subset of relevant items for a given user. However, the increasing volume of the data consumed by these systems may lead to a representation model with very high sparsity and dimensionality. Several approaches to overcome this problem have been proposed, neural embeddings being one of the most recent. Since then, many recommender systems were made using this representation model, but few consumed temporal information during the learning phase. This study shows how to adapt a pioneering method of item embeddings by adding a sliding window over time, in conjunction with a split in the user’s interaction history. Results indicate that considering temporal information when learning neural embeddings for items can significantly improve the quality of the recommendations.

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) Finance Code 88882.426978/2019-01, and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grant #2020/09354-3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The well-known competition of recommender systems, organized by the streaming company Netflix from 2006 to 2009: https://www.netflixprize.com/rules.html.

  2. 2.

    GroupLens. Available at: www.grouplens.org/datasets/. Access in August 31, 2021.

  3. 3.

    Data Mining Hackathon on BIG DATA (7 GB) Best Buy mobile web site. Available at: www.kaggle.com/c/acm-sf-chapter-hackathon-big. Access in August 31, 2021.

  4. 4.

    Netflix Prize data. Available at: www.kaggle.com/netflix-inc/netflix-prize-data. Access in August 31, 2021.

  5. 5.

    CiaoDVD Movie Ratings. Available at: www.konect.cc/networks/librec-ciaodvd-movie_ratings/. Access in August 31, 2021.

  6. 6.

    Retailrocket recommender system dataset. Available at: www.kaggle.com/retailrocket/ecommerce-dataset. Access in August 31, 2021.

References

  1. Adomavicius, G., Tuzhilin, A.: Multidimensional recommender systems: a data warehousing approach. Electron. Commer. 2232, 180–192 (2001). https://doi.org/10.1007/3-540-45598-1_17

    Article  MATH  Google Scholar 

  2. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005). https://doi.org/10.1109/TKDE.2005.99

    Article  Google Scholar 

  3. Baltrunas, L., Amatriain, X.: Towards time-dependant recommendation based on implicit feedback. In: Proceedings of the RecSys 2009 Workshop on Context-Aware Recommender Systems, RecSys 2009, pp. 1–5. Association for Computing Machinery, New York (2009)

    Google Scholar 

  4. Barkan, O., Koenigstein, N.: Item2Vec: neural item embedding for collaborative filtering. In: IEEE 26th International Workshop on Machine Learning for Signal Processing, MLSP 2016, pp. 1–6. IEEE, Piscataway, NJ, USA (2016). https://doi.org/10.1109/MLSP.2016.7738886

  5. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013). https://doi.org/10.1016/j.knosys.2013.03.012

    Article  Google Scholar 

  6. de Borba, E.J., Gasparini, I., Lichtnow, D.: Time-aware recommender systems: a systematic mapping. In: Kurosu, M. (ed.) HCI 2017. LNCS, vol. 10272, pp. 464–479. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58077-7_38

    Chapter  Google Scholar 

  7. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, UAI 1998, pp. 43–52. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1998)

    Google Scholar 

  8. Caselles-Duprés, H., Lesaint, F., Royo-Letelier, J.: Word2vec applied to recommendation: hyperparameters matter. In: Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, pp. 352–356. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3240323.3240377

  9. Collins, A., Beel, J.: Document embeddings vs. keyphrases vs. terms for recommender systems: a large-scale online evaluation. In: Proceedings of the 2019 ACM/IEEE Joint Conference on Digital Libraries, JCDL 2019, pp. 130–133. IEEE, New York (2019). https://doi.org/10.1109/JCDL.2019.00027

  10. Ding, Y., Li, X.: Time weight collaborative filtering. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, CIKM 2005, pp. 485–492. Association for Computing Machinery, New York (2005). https://doi.org/10.1145/1099554.1099689

  11. Peng, F.U., LV, J.H. and LI, B.J.: Attr2vec: a neural network based item embedding method. In: Proceedings of the 2nd International Conference on Computer, Mechatronics and Electronic Engineering, CMEE 2017, pp. 300–307. DEStech Publications, Lancaster, PA, USA (2017). https://doi.org/10.12783/dtcse/cmee2017/19993

  12. Grbovic, M., Cheng, H.: Real-time personalization using embeddings for search ranking at Airbnb. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2018, pp. 311–320. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3219819.3219885

  13. Grbovic, M., et al.: E-commerce in your inbox: product recommendations at scale. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2015, pp. 1809–1818. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2783258.2788627

  14. Greenstein-Messica, A., Rokach, L., Friedman, M.: Session-based recommendations using item embedding. In: Proceedings of the 22nd International Conference on Intelligent User Interfaces, IUI 2017, pp. 629–633. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3025171.3025197

  15. Hasanzadeh, S., Fakhrahmad, S.M., Taheri, M.: Review-based recommender systems: a proposed rating prediction scheme using word embedding representation of reviews. Comput. J. 1–10 (2020). https://doi.org/10.1093/comjnl/bxaa044

  16. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Proceedings of the 8th IEEE International Conference on Data Mining, ICDM 2008, pp. 263–272. IEEE Computer Society, Washington, D.C., USA (2008). https://doi.org/10.1109/ICDM.2008.22

  17. Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: Proceedings of the 10th International Conference on Information and Knowledge Management, CIKM 2001, pp. 247–254 (2001). https://doi.org/10.1145/502585.502627

  18. Khusro, S., Ali, Z., Ullah, I.: Recommender systems: issues, challenges, and research opportunities. In: Information Science and Applications (ICISA) 2016. LNEE, vol. 376, pp. 1179–1189. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0557-2_112

    Chapter  Google Scholar 

  19. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 447–456 (2009). https://doi.org/10.1145/1557019.1557072

  20. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263

    Article  Google Scholar 

  21. Lathia, N., Hailes, S., Capra, L.: Temporal collaborative filtering with adaptive neighbourhoods. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, pp. 796–797. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1571941.1572133

  22. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on Machine Learning, ICML 2014, pp. 1188–1196. JMLR.org (2014). https://doi.org/10.5555/3044805.3045025

  23. Matuszyk, P., Ao Vinagre, J., Spiliopoulou, M., Jorge, A.M., Ao Gama, J.: Forgetting methods for incremental matrix factorization in recommender systems. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, SAC 2015, pp. 947–953. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2695664.2695820

  24. Mikolov, T., Sutskever, I., Chen, K., Conrado, G., Dan, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS 2013, pp. 3111–3119. Curran Associates Inc., Red Hook, NY, USA (2013). https://doi.org/10.5555/2999792.2999959

  25. Rendle, S.: Factorization machines. In: Proceedings of the 10th IEEE International Conference on Data Mining, ICDM 2010, pp. 14–17. IEEE, New York (2010). https://doi.org/10.1109/ICDM.2010.127

  26. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, UAI 2009, pp. 452–461. AUAI Press, Arlington, VA, USA (2009). https://doi.org/10.5555/1795114.1795167

  27. Rudolph, M., Ruiz, F.J.R., Mandt, S., Blei, D.M.: Exponential family embeddings. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS 2016, pp. 478–486. Curran Associates Inc., Red Hook, NY, USA (2016). https://doi.org/10.7916/D8NZ9RHT

  28. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.T.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, WWW 2001, pp. 285–295. Association for Computing Machinery, New York (2001). https://doi.org/10.1145/371920.372071

  29. Sidana, S., Trofimov, M., Horodnytskyi, O., Laclau, C., Maximov, Y., Amini, M.-R.: User preference and embedding learning with implicit feedback for recommender systems. Data Min. Knowl. Disc. 35(2), 568–592 (2021). https://doi.org/10.1007/s10618-020-00730-8

    Article  Google Scholar 

  30. Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolutional sequence embedding. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining, WSDM 2018, pp. 565–573. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/2939672.2939673

  31. Vasile, F., Smirnova, E., Conneau, A.: Meta-prod2vec: product embeddings using side-information for recommendation. In: Proceedings of the 10th ACM Conference on Recommender Systems, RecSys 2016, pp. 225–232. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2959100.2959160

  32. Vinagre, J., Jorge, A.M.: Forgetting mechanisms for scalable collaborative filtering. J. Braz. Comput. Soc. 18(4), 271–282 (2012). https://doi.org/10.1007/s13173-012-0077-3

    Article  Google Scholar 

  33. Vinagre, J., Jorge, A.M., Gama, J.: An overview on the exploitation of time in collaborative filtering. WIREs Data Min. Knowl. Disc. 5, 195–215 (2015). https://doi.org/10.1002/widm.1160

    Article  Google Scholar 

  34. Wang, P., Guo, J., Lan, Y., Xu, J., Wan, S., Cheng, X.: Learning hierarchical representation model for nextbasket recommendation. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2015, pp. 403–412. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2766462.2767694

  35. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 353–362. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2939672.2939673

  36. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. 52(1), 5:1–5:35 (2019). https://doi.org/10.1145/3285029

  37. Zhao, X., Louca, R., Hu, D., Hong, L.: The difference between a click and a cart-add: learning interaction-specific embeddings. In: Companion Proceedings of the Web Conference 2020, WWW 2020, pp. 454–460. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3366424.3386197

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro R. Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pires, P.R., Pascon, A.C., Almeida, T.A. (2021). Time-Dependent Item Embeddings for Collaborative Filtering. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13074. Springer, Cham. https://doi.org/10.1007/978-3-030-91699-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91699-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91698-5

  • Online ISBN: 978-3-030-91699-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics