Skip to main content

Efficient Density-Based Models for Multiple Machine Learning Solutions over Large Datasets

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

Unsupervised and semi-supervised machine learning is very advantageous in data-intensive applications. Density-based hierarchical clustering obtains a detailed description of the structures of clusters and outliers in a dataset through density functions. The resulting hierarchy of these algorithms can be derived from a minimal spanning tree whose edges quantify the maximum density required for the connected data to characterize clusters, given a minimum number of objects, MinPts, in a given neighborhood. CORE-SG is a powerful spanning graph capable of deriving multiple hierarchical solutions with different densities with computational performance far superior to its predecessors. However, density-based algorithms use pairwise similarity calculations, which leads such algorithms to an asymptotic complexity of \(O(n^2)\) for n objects in the dataset, impractical in scenarios with large amounts of data. This article enables hierarchical machine learning models based on density by reducing the computational cost with the help of Data Bubbles, focusing on clustering and outlier detection. It presents a study of the impact of data summarization on the quality of unsupervised models with multiple densities and the gain in computational performance. We provide scalability for several machine learning methods based on these models to handle large volumes of data without a significant loss in the resulting quality, enabling potential new applications like density-based data stream clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Implementation in: https://github.com/natanaelbatista99/CORE-SSG.

References

  1. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. SIGMOD Rec. 28(2), 49–60 (1999)

    Article  Google Scholar 

  2. Barlow, H.: Unsupervised Learning. Neural Comput. 1(3), 295–311 (1989)

    Article  Google Scholar 

  3. Blazquez, D., Domenech, J.: Big data sources and methods for social and economic analyses. Technol. Forecast. Soc. Chang. 130, 99–113 (2018)

    Article  Google Scholar 

  4. Breunig, M.M., Kriegel, H.P., Kröger, P., Sander, J.: Data bubbles: quality preserving performance boosting for hierarchical clustering. In: Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, pp. 79–90 (2001)

    Google Scholar 

  5. Breunig, M.M., Kriegel, H.-P., Sander, J.: Fast hierarchical clustering based on compressed data and OPTICS. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 232–242. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45372-5_23

    Chapter  Google Scholar 

  6. Campello, R.J.G.B., Moulavi, D., Zimek, A., Sander, J.: Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Trans. Knowl. Discov. Data 10(1), 1–51 (2015)

    Article  Google Scholar 

  7. Campello, R.J., Moulavi, D., Zimek, A., Sander, J.: A framework for semi-supervised and unsupervised optimal extraction of clusters from hierarchies. Data Min. Knowl. Disc. 27, 344–371 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheema, P., Alamdari, M.M., Chang, K., Kim, C., Sugiyama, M.: A drive-by bridge inspection framework using non-parametric clusters over projected data manifolds. Mech. Syst. Signal Process. 180, 109401 (2022)

    Article  Google Scholar 

  9. Djonlagic, I., et al.: Macro and micro sleep architecture and cognitive performance in older adults. Nat. Hum. Behav. 5(1), 123–145 (2021)

    Article  Google Scholar 

  10. Gertrudes, J.C., Zimek, A., Sander, J., Campello, R.J.G.B.: A unified view of density-based methods for semi-supervised clustering and classification. Data Min. Knowl. Discov. 33(6), 1894–1952 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)

    Article  MATH  Google Scholar 

  12. Johnson, D., Xiong, C., Gao, J., Corso, J.: Comprehensive cross-hierarchy cluster agreement evaluation. ACM TKDD. 10, 1–51 (2013)

    Google Scholar 

  13. Liu, B., Shi, Y., Wang, Z., Wang, W., Shi, B.: Dynamic incremental data summarization for hierarchical clustering. In: Yu, J.X., Kitsuregawa, M., Leong, H.V. (eds.) WAIM 2006. LNCS, vol. 4016, pp. 410–421. Springer, Heidelberg (2006). https://doi.org/10.1007/11775300_35

    Chapter  Google Scholar 

  14. Miccio, L.A., Schwartz, G.A.: Mapping chemical structure-glass transition temperature relationship through artificial intelligence. Macromolecules 54(4), 1811–1817 (2021)

    Article  Google Scholar 

  15. Minussi, D.C., et al.: Breast tumours maintain a reservoir of subclonal diversity during expansion. Nature 592(7853), 302–308 (2021)

    Article  Google Scholar 

  16. Murray, B., Perera, L.P.: An AIS-based deep learning framework for regional ship behavior prediction. Reliab. Eng. Syst. Saf. 215, 107819 (2021)

    Article  Google Scholar 

  17. Nassar, S., Sander, J., Cheng, C.: Incremental and effective data summarization for dynamic hierarchical clustering. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 467–478. SIGMOD 2004, Association for Computing Machinery, New York, NY, USA (2004)

    Google Scholar 

  18. Neto, A.C.A., Naldi, M.C., Campello, R.J.G.B., Sander, J.: Core-SG: efficient computation of multiple MSTS for density-based methods. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 951–964 (2022)

    Google Scholar 

  19. Norman, T.M., et al.: Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365(6455), 786–793 (2019)

    Article  Google Scholar 

  20. dos Santos, J.A., Syed, T.I., Naldi, M.C., Campello, R.J., Sander, J.: Hierarchical density-based clustering using MapReduce. IEEE Trans. Big Data 7(1), 102–114 (2019)

    Article  Google Scholar 

  21. Savoie, W., et al.: A robot made of robots: emergent transport and control of a smarticle ensemble. Sci. Robot. 4(34), eaax4316 (2019)

    Article  Google Scholar 

  22. Vendramin, L., Campello, R.J., Hruschka, E.R.: Relative clustering validity criteria: a comparative overview. Statist. Anal. Data Mining ASA Data Sci. J. 3(4), 209–235 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zerhari, B., Lahcen, A.A., Mouline, S.: Big data clustering: Algorithms and challenges. In: Proceedings of International Conference on Big Data, Cloud and Applications (BDCA-5) (2015)

    Google Scholar 

  24. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method for very large databases. SIGMOD Rec. 25(2), 103–114 (1996)

    Article  Google Scholar 

  25. Zhang, Y., Cheung, Y., Liu, Y.: Quality preserved data summarization for fast hierarchical clustering. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 4139–4146 (2016)

    Google Scholar 

  26. Zhou, J., Sander, J.: Data bubbles for non-vector data: Speeding-up hierarchical clustering in arbitrary metric spaces. In: Freytag, J.C., Lockemann, P., Abiteboul, S., Carey, M., Selinger, P., Heuer, A. (eds.) Proc. 2003 VLDB Conf., pp. 452–463. Morgan Kaufmann, San Francisco (2003)

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors would like to thank CNPq MAI/DAI program, CAPES, and FAPESP for their financial support. We also thank Prof. Jörg Sander for his insight and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natanael F. Dacioli Batista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Batista, N.F.D., Nunes, B.L., Naldi, M.C. (2023). Efficient Density-Based Models for Multiple Machine Learning Solutions over Large Datasets. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14195. Springer, Cham. https://doi.org/10.1007/978-3-031-45368-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45368-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45367-0

  • Online ISBN: 978-3-031-45368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics