Skip to main content

Specifying Preferences over Policies Using Branching Time Temporal Logic

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14195))

Included in the following conference series:

  • 212 Accesses

Abstract

Automated Planning is the subarea of AI devoted to developing algorithms that can solve sequential decision making problems. By taking a formal description of the environment, a planning algorithm generates a plan of actions (also called policy) that can guide an agent to accomplish a certain task. Classical planning assumes the environment is fully-observed and evolves in a deterministic way considering only simple reachability goals (e.g. a set of states to be reached by a plan or policy). In this work, we approach fully-observed non-deterministic planning (FOND) tasks which allow the specification of complex goals such as the preference over policy quality (weak, strong or strong-cyclic) and preferences over states in the paths generated by a policy. To solve this problem we propose formulae in \(\alpha \)-CTL (branching time) temporal logic and use planning as model checking algorithms based on \(\alpha \)-CTL to generate a solution that captures both, agent’s preferences and the desired policy quality. To evaluate the effectiveness of the proposed formulae and algorithms, we run experiments in the Rovers benchmark domain. Up to our knowledge, this is the first work to solve non-deterministic planning problems with preferences using a CTL temporal logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. 27(06), 509–516 (1978)

    Article  MATH  Google Scholar 

  2. Baier, J.A., Bacchus, F., McIlraith, S.A.: A heuristic search approach to planning with temporally extended preferences. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, pp. 1808–1815 (2007)

    Google Scholar 

  3. Baier, S., McIlraith, S.A.: Htn planning with preferences. In: 21st Int. Joint Conf. on Artificial Intelligence, pp. 1790–1797 (2009)

    Google Scholar 

  4. Bonet, B., De Giacomo, G., Geffner, H., Rubin, S.: Generalized planning: Non-deterministic abstractions and trajectory constraints. arXiv preprint arXiv:1909.12135 [S.l] (2019)

  5. Camacho, A., Triantafillou, E., Muise, C., Baier, J.A., McIlraith, S.A.: Non-deterministic planning with temporally extended goals: Ltl over finite and infinite traces. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  6. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic planning via symbolic model checking. Artif. Intell. 147(1–2), 35–84 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Edmund, M., Clarke, J., Grumberg, O., Peled, D.A.: Model checking. MIT Press. [S.l] p. 314 (1999)

    Google Scholar 

  8. Gerevini, A.E., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic planning in the fifth international planning competition: Pddl3 and experimental evaluation of the planners. Artif. Intell. 173(5–6), 619–668 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: theory and practice. Elsevier (2004)

    Google Scholar 

  10. Hoffmann, J.: FF: the fast-forward planning system. AI Mag. 22(3), 57–57 (2001)

    Google Scholar 

  11. Hoffmann, J.: Everything you always wanted to know about planning. In: Annual Conference on Artificial Intelligence, pp. 1–13. Springer (2011)

    Google Scholar 

  12. Hsu, C.W., Wah, B.W., Huang, R., Chen, Y.: Constraint partitioning for solving planning problems with trajectory constraints and goal preferences. In: IJCAI, pp. 1924–1929 (2007)

    Google Scholar 

  13. Kautz, H., Selman, B.: Unifying sat-based and graph-based planning. In: IJCAI, vol. 99, pp. 318–325 (1999)

    Google Scholar 

  14. Kim, J., Banks, C.J., Shah, J.A.: Collaborative planning with encoding of users’ high-level strategies. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  15. Kindler, E.: Safety and liveness properties: a survey. Bull. Eur. Assoc. Theor. Comput. Sci. 53(268–272), 30 (1994)

    Google Scholar 

  16. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Software Eng. 2, 125–143 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. de Menezes, M.V., de Barros, L.N., do Lago Pereira, S.: Symbolic regression for non-deterministic actions (2014)

    Google Scholar 

  18. Menezes, Maria Viviane de: Mudanças em Problemas de Planejamento sem Solução. 2014. 127 f. Ph.D. thesis, Universidade de São Paulo, São Paulo (2014)

    Google Scholar 

  19. Muise, C.J., McIlraith, S.A., Beck, C.: Improved non-deterministic planning by exploiting state relevance. In: Twenty-Second International Conference on Automated Planning and Scheduling (2012)

    Google Scholar 

  20. Percassi, F., Gerevini, A.E.: On compiling away pddl3 soft trajectory constraints without using automata. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 29, pp. 320–328 (2019)

    Google Scholar 

  21. Pereira, S.d.L.: Planejamento sob incerteza para metas de alcancabilidade estendidas. Ph.D. thesis, Universidade de São Paulo, São Paulo (2007)

    Google Scholar 

  22. Pereira, S.L., de Barros, L.N.: A logic-based agent that plans for extended reachability goals. Auton. Agent. Multi-Agent Syst. 16(3), 327–344 (2008)

    Article  Google Scholar 

  23. Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems. In: Handbook of Model Checking, pp. 27–73 (2018)

    Google Scholar 

  24. Rintanen, J.: Regression for classical and nondeterministic planning. In: ECAI 2008, pp. 568–572. IOS Press (2008)

    Google Scholar 

  25. Santhanam, G.R., Basu, S., Honavar, V.: Representing and reasoning with qualitative preferences: tools and applications. Synthesis Lectures Artif. Intell. Mach. Learn. 10(1), 1–154 (2016)

    Article  MATH  Google Scholar 

  26. Santos, R.M.d.: Especificação de preferências de planos usando metas estendidas na lógica alpha-ctl (2019)

    Google Scholar 

  27. Santos, V.B.d., Barros, L.N.d., Pereira, S.d.L., Menezes, M.V.d.: Symbolic fond planning for temporally extended goals. In: Workshop on Knowledge Engineering for Planning and Scheduling (2022)

    Google Scholar 

  28. dos Santos, V.M.B., de Barros, L.N., de Menezes, M.V.: Symbolic planning for strong-cyclic policies. In: 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), pp. 168–173. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warlles Carlos Costa Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Machado, W.C.C., dos Santos, V.B., de Barros, L.N., de Menezes, M.V. (2023). Specifying Preferences over Policies Using Branching Time Temporal Logic. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14195. Springer, Cham. https://doi.org/10.1007/978-3-031-45368-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45368-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45367-0

  • Online ISBN: 978-3-031-45368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics