Skip to main content

An Explainable Model to Support the Decision About the Therapy Protocol for AML

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14195))

Included in the following conference series:

  • 211 Accesses

Abstract

Acute Myeloid Leukemia (AML) is one of the most aggressive types of hematological neoplasm. To support the specialists’ decision about the appropriate therapy, patients with AML receive a prognostic of outcomes according to their cytogenetic and molecular characteristics, often divided into three risk categories: favorable, intermediate, and adverse. However, the current risk classification has known problems, such as the heterogeneity between patients of the same risk group and no clear definition of the intermediate risk category. Moreover, as most patients with AML receive an intermediate-risk classification, specialists often demand other tests and analyses, leading to delayed treatment and worsening of the patient’s clinical condition. This paper presents the data analysis and an explainable machine-learning model to support the decision about the most appropriate therapy protocol according to the patient’s survival prediction. In addition to the prediction model being explainable, the results obtained are promising and indicate that it is possible to use it to support the specialists’ decisions safely. Most importantly, the findings offered in this study have the potential to open new avenues of research toward better treatments and prognostic markers.

Supported by CAPES, CNPq, and FAPESP grant #2021/13325-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    InterpretML is a Python library that provides a set of tools and algorithms for interpreting and explaining machine learning models. The documentation is available at https://interpret.ml/docs.

References

  1. Arber, D.A., et al.: International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood 140(11), 1200–1228 (2022)

    Article  Google Scholar 

  2. Caruana, R., et al.: Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1721–1730. ACM, Sydney NSW Australia (2015)

    Google Scholar 

  3. Charrot, S., et al.: AML through the prism of molecular genetics. Br. J. Haematol. 188(1), 49–62 (2020)

    Article  Google Scholar 

  4. Combi, C., et al.: A manifesto on explainability for artificial intelligence in medicine. Artif. Intell. Med. 133, 102423–102423 (2022)

    Article  Google Scholar 

  5. Döhner, H., et al.: Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115(3), 453–474 (2010)

    Article  Google Scholar 

  6. Döhner, H., et al.: Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4), 424–447 (2017)

    Article  Google Scholar 

  7. Döhner, H., et al.: Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 140(12), 1345–1377 (2022)

    Article  Google Scholar 

  8. Eisa, Y.A., et al.: The role of PHF6 in hematopoiesis and hematologic malignancies. Stem Cell Rev. Rep. 19(1), 67–75 (2023)

    Article  Google Scholar 

  9. Estey, E.A.: Acute myeloid leukemia: 2019 update on risk-stratification and management. Am. J. Hematol. 93(10), 1267–1291 (2019)

    Article  Google Scholar 

  10. Gal, O., et al.: Predicting complete remission of acute myeloid leukemia: machine learning applied to gene expression. Cancer Inf. 18, 1–5 (2019)

    Google Scholar 

  11. Grob, T., et al.: Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood 139(15), 2347–2354 (2022)

    Article  Google Scholar 

  12. Kastenhuber, E.R., Lowe, S.W.: Putting p53 in context. Cell 170(6), 1062–1078 (2017)

    Article  Google Scholar 

  13. Kurzer, J.H., Weinberg, O.K.: PHF6 mutations in hematologic malignancies. Front. Oncol. 11, 704471–704471 (2021)

    Article  Google Scholar 

  14. Lagunas-Rangel, F.A., et al.: Acute myeloid leukemia-genetic alterations and their clinical prognosis. Int. J. Hematol. Oncol. Stem Cell Res. 11, 328–339 (2017)

    Google Scholar 

  15. Ley, T.J., et al.: DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456(7218), 66–72 (2008)

    Article  Google Scholar 

  16. Lin, W., et al.: Identification of MICALL2 as a novel prognostic biomarker correlating with inflammation and T cell exhaustion of kidney renal clear cell carcinoma. J. Cancer 13(4), 1214–1228 (2022)

    Article  Google Scholar 

  17. Gerstung, M., et al.: Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat. Genet. 49, 332–340 (2017)

    Article  Google Scholar 

  18. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  19. Mosquera Orgueira, A., et al.: Personalized survival prediction of patients with acute myeloblastic leukemia using gene expression profiling. Front. Oncol. 11, 657191–657191 (2021)

    Article  Google Scholar 

  20. Nori, H., Caruana, R., Bu, Z., Shen, J.H., Kulkarni, J.: Accuracy, interpretability, and differential privacy via explainable boosting. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 8227–8237. PMLR (2021)

    Google Scholar 

  21. Pelcovits, A., Niroula, R.: Acute myeloid leukemia: a review. R I Med. J. 103(3), 38–40 (2020)

    Google Scholar 

  22. Pimenta, R.J.G., et al.: Genome-wide approaches for the identification of markers and genes associated with sugarcane yellow leaf virus resistance. Sci. Rep. 11(1), 15730 (2021)

    Article  Google Scholar 

  23. Rahman, M.M., et al.: Association of p53 gene mutation with helicobacter pylori infection in gastric cancer patients and its correlation with clinicopathological and environmental factors. World J. Oncol. 10(1), 46–54 (2019)

    Article  MathSciNet  Google Scholar 

  24. Sharon, D., et al.: DELE1 loss and dysfunctional integrated stress signaling in TP53 mutated AML is a novel pathway for venetoclax resistance [abstract]. Can. Res. 83, 2530 (2023)

    Article  Google Scholar 

  25. The Cancer Genome Atlas Research Network: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368(22), 2059–2074 (2013)

    Article  Google Scholar 

  26. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B (Methodological) 58(1), 267–288 (1996)

    Google Scholar 

  27. Tyner, J.W., et al.: Functional genomic landscape of acute myeloid leukaemia. Nature 562(7728), 526–531 (2018)

    Article  Google Scholar 

  28. Van Vlierberghe, P., et al.: PHF6 mutations in adult acute myeloid leukemia. Leukemia 25(1), 130–134 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago A. Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almeida, J.M., Castro, G.A., Machado-Neto, J.A., Almeida, T.A. (2023). An Explainable Model to Support the Decision About the Therapy Protocol for AML. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14195. Springer, Cham. https://doi.org/10.1007/978-3-031-45368-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45368-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45367-0

  • Online ISBN: 978-3-031-45368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics