Skip to main content

Ensemble Architectures and Efficient Fusion Techniques for Convolutional Neural Networks: An Analysis on Resource Optimization Strategies

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

The human gastrointestinal tract is prone to various abnormalities, including lethal diseases such as cancer, necessitating better endoscopic performance and standardized screening. Endoscopic scoring systems lack generalizability, emphasizing the need for artificial intelligence-based solutions. Using the HyperKvasir dataset, we employed deep learning, specifically Convolutional Neural Networks, or shortly CNNs, to analyze endoscopic images and videos. Our study focused on improving the classification of gastrointestinal tract diseases by proposing various CNN ensembles and fusion techniques. Through the use of seven CNN models and effective merging techniques, we achieved enhanced performance. Validation involved literature review and experiments. DenseNet-161 influenced the merger process, and integrating ResNet152 and VGG further enhanced effectiveness. Resource analysis included GPU model, RAM usage, and execution time. Results demonstrated comparable performance to the previous model, with F1-score of 0.910 and Matthews correlation coefficient, MCC for short, of 0.902, using 10 GB GPU RAM (compared to 15.8 GB). With 24.7 GB GPU RAM, F1-score of 0.913 and MCC of 0.905 were achieved. These findings advance our understanding of ensemble architectures and fusion techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at: https://datasets.simula.no/hyper-kvasir.

  2. 2.

    Available at: https://www.connectedpapers.com/main.

References

  1. Ali, S., et al.: An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy. Sci. Rep. 10(1), 2748 (2020)

    Article  Google Scholar 

  2. Borgli, H., et al.: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7(1), 283 (2020)

    Article  Google Scholar 

  3. Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over f1 score and accuracy in binary classification evaluation. BMC Genom. 21, 1–13 (2020)

    Article  Google Scholar 

  4. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Google Scholar 

  5. Hicks, S.A., Jha, D., Thambawita, V., Halvorsen, P., Hammer, H.L., Riegler, M.A.: The EndoTect 2020 challenge: evaluation and comparison of classification, segmentation and inference time for endoscopy. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12668, pp. 263–274. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68793-9_18

    Chapter  Google Scholar 

  6. Iqbal, I., Walayat, K., Kakar, M.U., Ma, J.: Automated identification of human gastrointestinal tract abnormalities based on deep convolutional neural network with endoscopic images. Intell. Syst. Appl. 16, 200149 (2022)

    Google Scholar 

  7. Jha, D., et al.: Real-time polyp detection, localization and segmentation in colonoscopy using deep learning. IEEE Access 9, 40496–40510 (2021)

    Article  Google Scholar 

  8. Jha, D., et al.: Medico multimedia task at mediaeval 2020: automatic polyp segmentation. arXiv preprint arXiv:2012.15244 (2020)

  9. Jha, D., et al.: A comprehensive study on colorectal polyp segmentation with resunet++, conditional random field and test-time augmentation. IEEE J. Biomed. Health Inform. 25(6), 2029–2040 (2021)

    Article  Google Scholar 

  10. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105 (2012)

    Google Scholar 

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  13. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  14. Naess, E., Thambawita, V., Hicks, S.A., Riegler, M.A., Halvorsen, P.: Pyramidal segmentation of medical images using adversarial training. In: Proceedings of the 2021 Workshop on Intelligent Cross-Data Analysis and Retrieval, pp. 33–38 (2021)

    Google Scholar 

  15. Sarkar, D., Bali, R., Sharma, T.: Practical Machine Learning with Python (2018). https://doi.org/10.1007/978-1-4842-3207-1

  16. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

    Article  Google Scholar 

  17. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural networks. Synth. Lect. Comput. Archit. 15(2), 1–341 (2020)

    MATH  Google Scholar 

  18. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  19. Takahashi, K., Yamamoto, K., Kuchiba, A., Koyama, T.: Confidence interval for micro-averaged f 1 and macro-averaged f 1 scores. Appl. Intell. 52(5), 4961–4972 (2022)

    Article  Google Scholar 

  20. Thambawita, V., et al.: An extensive study on cross-dataset bias and evaluation metrics interpretation for machine learning applied to gastrointestinal tract abnormality classification. ACM Trans. Comput. Healthc. 1(3), 1–29 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001* and Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant 306436/2022-1). In addition, it had the support of the Instituto Federal do Triângulo Mineiro e Universidade Federal de Uberlândia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cícero L. Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costa, C.L., Lima, D.A., Zorzo Barcelos, C.A., Travençolo, B.A.N. (2023). Ensemble Architectures and Efficient Fusion Techniques for Convolutional Neural Networks: An Analysis on Resource Optimization Strategies. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14196. Springer, Cham. https://doi.org/10.1007/978-3-031-45389-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45389-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45388-5

  • Online ISBN: 978-3-031-45389-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics