Skip to main content

EfficientDeepLab for Automated Trachea Segmentation on Medical Images

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

Segmentation of Organs at Risk is a fundamental step during radiotherapy planning for cancer treatment. Its goal is to preserve healthy tissue around the tumor and ensure that the most radiation strikes only cancer cells. Physicians do this job manually, which can be slow and error-prone. Thus, automatic segmentation methodologies can speed up organ delimiting during radiotherapy planning. This work designs a method, EfficientDeepLab, a convolutional neural network architecture trained on CT scans for trachea segmentation, and obtained an 88.6% dice score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amaro, E.J., Yamashita, H.: Aspectos básicos de tomografia computadorizada e ressonância magnética. Braz. J. Psychiatry 23, 2–3 (2001)

    Article  Google Scholar 

  2. Baskar, R., Lee, K.A., Yeo, R., Yeoh, K.W.: Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci. 9(3), 193 (2012)

    Article  Google Scholar 

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs (2016)

    Google Scholar 

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018). https://doi.org/10.1109/tpami.2017.2699184

    Article  Google Scholar 

  5. Chen, L.C., Zhu, Y., Papaãndreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation (2018)

    Google Scholar 

  6. Consídera, D.P., et al.: A tomografia computadorizada de alta resolução na avaliação da toxicidade pulmonar por amiodarona. Radiologia Brasileira 39, 113–118 (2006)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  8. Diniz, J., Ferreira, J., Silva, G., Quintanilha, D., Silva, A., Paiva, A.: Segmentação de coração em tomografias computadorizadas utilizando atlas probabilístico e redes neurais convolucionais. In: Anais do XXI Simpósio Brasileiro de Computação Aplicada á Saúde, pp. 83–94. SBC, Porto Alegre, RS, Brasil (2021). https://doi.org/10.5753/sbcas.2021.16055. https://sol.sbc.org.br/index.php/sbcas/article/view/16055

  9. Feng, S., et al.: CPFNet: context pyramid fusion network for medical image segmentation. IEEE Trans. Med. Imaging 39(10), 3008–3018 (2020). https://doi.org/10.1109/TMI.2020.2983721

    Article  Google Scholar 

  10. Gupta, T., Narayan, C.A.: Image-guided radiation therapy: physician’s perspectives. J. Med. Phys./Assoc. Med. Physicists India 37(4), 174 (2012)

    Google Scholar 

  11. Hansen, P.C., Jørgensen, J., Lionheart, W.R.: Computed tomography: algorithms, insight, and just enough theory. SIAM (2021)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23

    Chapter  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  14. Kalender, W.A.: X-ray computed tomography. Phys. Med. Biol. 51(13), R29 (2006)

    Article  Google Scholar 

  15. Kezmann, J.M.: Tensorflow advanced segmentation models (2020). https://github.com/JanMarcelKezmann/TensorFlow-Advanced-Segmentation-Models

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  17. Lambert, Z., Petitjean, C., Dubray, B., Ruan, S.: Segthor: segmentation of thoracic organs at risk in CT images (2019). https://doi.org/10.48550/ARXIV.1912.05950. arxiv.org/abs/1912.05950

  18. Noël, G., Antoni, D., Barillot, I., Chauvet, B.: Délinéation des organes á risque et contraintes dosimétriques. Cancer/Radiothérapie 20, S36–S60 (2016). https://doi.org/10.1016/j.canrad.2016.07.032. https://www.sciencedirect.com/science/article/pii/S1278321816301676. recorad: Recommandations pour la pratique de la radiothérapie externe et de la curiethérapie

  19. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks (2019)

    Google Scholar 

  20. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6105–6114. PMLR (2019). https://proceedings.mlr.press/v97/tan19a.html

  21. Tekatli, H., et al.: Normal tissue complication probability modeling of pulmonary toxicity after stereotactic and hypofractionated radiation therapy for central lung tumors. Int. J. Radiat. Oncol. Biol. Phys. 100(3), 738–747 (2018)

    Google Scholar 

  22. Wang, Q., et al.: 3D enhanced multi-scale network for thoracic organs segmentation. SegTHOR@ ISBI 3(1), 1–5 (2019)

    Google Scholar 

  23. Wang, S., et al.: Conquering data variations in resolution: a slice-aware multi-branch decoder network. IEEE Trans. Med. Imaging 39(12), 4174–4185 (2020). https://doi.org/10.1109/TMI.2020.3014433

    Article  Google Scholar 

  24. Yan, X., Tang, H., Sun, S., Ma, H., Kong, D., Xie, X.: After-UNet: axial fusion transformer UNet for medical image segmentation. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Los Alamitos, CA, USA, pp. 3270–3280. IEEE Computer Society (2022). https://doi.org/10.1109/WACV51458.2022.00333. https://doi.ieeecomputersociety.org/10.1109/WACV51458.2022.00333

  25. Zhao, W., Chen, H., Lu, Y.: W-net: A network structure for automatic segmentation of organs at risk in thorax computed tomography. In: Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing, IMIP 2020, pp. 66–69. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3399637.3399642

Download references

Acknowledgments

This work was carried out with the support of the Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) - Financing Code 001, Maranhão Research Support Foundation (FAPEMA), National Council for Scientific and Technological Development (CNPq) and Brazilian Company of Hospital Services (Ebserh) Brazil (Proc. 409593/2021-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Guilherme Santos Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernandes, A.G.S., Braz Junior, G., Diniz, J.O.B., Silva, A.C., Matos, C.E.F. (2023). EfficientDeepLab for Automated Trachea Segmentation on Medical Images. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14196. Springer, Cham. https://doi.org/10.1007/978-3-031-45389-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45389-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45388-5

  • Online ISBN: 978-3-031-45389-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics