Skip to main content

Does Pre-training on Brain-Related Tasks Results in Better Deep-Learning-Based Brain Age Biomarkers?

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

Brain age prediction using neuroimaging data has shown great potential as an indicator of overall brain health and successful aging, as well as a disease biomarker. Deep learning models have been established as reliable and efficient brain age estimators, being trained to predict the chronological age of healthy subjects. In this paper, we investigate the impact of a pre-training step on deep learning models for brain age prediction. More precisely, instead of the common approach of pre-training on natural imaging classification, we propose pre-training the models on brain-related tasks, which led to state-of-the-art results in our experiments on ADNI data. Furthermore, we validate the resulting brain age biomarker on images of patients with mild cognitive impairment and Alzheimer’s disease. Interestingly, our results indicate that better-performing deep learning models in terms of brain age prediction on healthy patients do not result in more reliable biomarkers.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In contrast to natural imaging datasets, as medical imaging requires an expensive procedure and legal authorization from each subject.

  2. 2.

    https://www.med.upenn.edu/cbica/brats2020/data.html.

  3. 3.

    https://github.com/gama-ufsc/brain-age.

  4. 4.

    At the end of each epoch, we compute the average over the 5 latest results, including the current one.

  5. 5.

    https://github.com/gama-ufsc/brain-age.

  6. 6.

    The results of the tests on CN-MCI and CN-AD are available in our code repository https://github.com/gama-ufsc/brain-age.

References

  1. Armanious, K., et al.: Age-Net: an MRI-based iterative framework for brain biological age estimation. IEEE Trans. Med. Imaging 40(7), 1778–1791 (2021). https://doi.org/10.1109/TMI.2021.3066857

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  3. Bakas, S., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge (2018). https://doi.org/10.48550/ARXIV.1811.02629. Publisher: arXiv Version Number: 3

  4. Bashyam, V.M., et al.: MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14,468 individuals worldwide. Brain 143(7), 2312–2324 (2020). https://doi.org/10.1093/brain/awaa160

    Article  Google Scholar 

  5. Cole, J.H., et al.: Brain age predicts mortality. Mol. Psychiatry 23(5), 1385–1392 (2018). https://doi.org/10.1038/mp.2017.62

    Article  Google Scholar 

  6. Cole, J.H., Leech, R., Sharp, D.J., for the Alzheimer’s Disease Neuroimaging Initiative: Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Ann. Neurol. 77(4), 571–581 (2015). https://doi.org/10.1002/ana.24367

  7. Cole, J.H., et al.: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 163, 115–124 (2017). https://doi.org/10.1016/j.neuroimage.2017.07.059

    Article  Google Scholar 

  8. Dinsdale, N.K., et al.: Learning patterns of the ageing brain in MRI using deep convolutional networks. Neuroimage 224, 117401 (2021). https://doi.org/10.1016/j.neuroimage.2020.117401

    Article  Google Scholar 

  9. Fay, M.P., Proschan, M.A.: Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat. Surv. 4, 1–39 (2010). https://doi.org/10.1214/09-SS051

  10. Franke, K., Ziegler, G., Klöppel, S., Gaser, C.: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50(3), 883–892 (2010). https://doi.org/10.1016/j.neuroimage.2010.01.005

    Article  Google Scholar 

  11. Gaser, C., Franke, K., Klöppel, S., Koutsouleris, N., Sauer, H.: Alzheimer’s disease neuroimaging initiative: BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PLoS ONE 8(6), e67346 (2013). https://doi.org/10.1371/journal.pone.0067346

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  13. Deng, J., Berg, A.C., Li, K., Fei-Fei, L.: What does classifying more than 10,000 image categories tell us? In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 71–84. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_6

    Chapter  Google Scholar 

  14. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  15. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  16. Isensee, F., et al.: Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain Mapp. 40(17), 4952–4964 (2019). https://doi.org/10.1002/hbm.24750

    Article  Google Scholar 

  17. Jonsson, B.A., et al.: Brain age prediction using deep learning uncovers associated sequence variants. Nat. Commun. 10(1), 5409 (2019). https://doi.org/10.1038/s41467-019-13163-9

    Article  Google Scholar 

  18. Kondo, C., et al.: An age estimation method using brain local features for T1-weighted images. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, pp. 666–669. IEEE (2015). https://doi.org/10.1109/EMBC.2015.7318450

  19. Lam, P., Zhu, A.H., Gari, I.B., Jahanshad, N., Thompson, P.M.: 3D grid-attention networks for interpretable age and Alzheimer’s disease prediction from structural MRI (2020)

    Google Scholar 

  20. Lee, J., et al.: Deep learning-based brain age prediction in normal aging and dementia. Nat. Aging 2(5), 412–424 (2022). https://doi.org/10.1038/s43587-022-00219-7

    Article  Google Scholar 

  21. Liem, F., et al.: Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage 148, 179–188 (2017). https://doi.org/10.1016/j.neuroimage.2016.11.005

    Article  Google Scholar 

  22. Ly, M., et al.: Improving brain age prediction models: incorporation of amyloid status in Alzheimer’s disease. Neurobiol. Aging 87, 44–48 (2020). https://doi.org/10.1016/j.neurobiolaging.2019.11.005

    Article  Google Scholar 

  23. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947). https://doi.org/10.1214/aoms/1177730491

    Article  MathSciNet  MATH  Google Scholar 

  24. Marcel, S., Rodriguez, Y.: Torchvision the machine-vision package of torch. In: Proceedings of the 18th ACM International Conference on Multimedia, Firenze, Italy, pp. 1485–1488. ACM (2010). https://doi.org/10.1145/1873951.1874254

  25. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  26. More, S., Antonopoulos, G., Hoffstaedter, F., Caspers, J., Eickhoff, S.B., Patil, K.R.: Brain-age prediction: a systematic comparison of machine learning workflows. Neuroimage 270, 119947 (2023). https://doi.org/10.1016/j.neuroimage.2023.119947

    Article  Google Scholar 

  27. Peng, H., Gong, W., Beckmann, C.F., Vedaldi, A., Smith, S.M.: Accurate brain age prediction with lightweight deep neural networks. Med. Image Anal. 68, 101871 (2021). https://doi.org/10.1016/j.media.2020.101871

    Article  Google Scholar 

  28. Petersen, R.C., et al.: Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization. Neurology 74(3), 201–209 (2010). https://doi.org/10.1212/WNL.0b013e3181cb3e25

    Article  Google Scholar 

  29. Poloni, K.M., Ferrari, R.J.: A deep ensemble hippocampal CNN model for brain age estimation applied to Alzheimer’s diagnosis. Expert Syst. Appl. 195, 116622 (2022). https://doi.org/10.1016/j.eswa.2022.116622

    Article  Google Scholar 

  30. Popescu, S.G., Glocker, B., Sharp, D.J., Cole, J.H.: Local brain-age: a U-Net model. Front. Aging Neurosci. 13, 761954 (2021). https://doi.org/10.3389/fnagi.2021.761954

    Article  Google Scholar 

  31. Raghu, M., Zhang, C., Kleinberg, J., Bengio, S.: Transfusion: Understanding Transfer Learning for Medical Imaging. Curran Associates Inc., Red Hook (2019). https://dl.acm.org/doi/10.5555/3454287.3454588

  32. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  33. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  34. Wang, J., Li, W., Miao, W., Dai, D., Hua, J., He, H.: Age estimation using cortical surface pattern combining thickness with curvatures. Med. Biol. Eng. Comput. 52(4), 331–341 (2014). https://doi.org/10.1007/s11517-013-1131-9

    Article  Google Scholar 

  35. Wyman, B.T., et al.: Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer’s Dement. 9(3), 332–337 (2013). https://doi.org/10.1016/j.jalz.2012.06.004

    Article  Google Scholar 

  36. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018). https://doi.org/10.1109/LGRS.2018.2802944

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Danilo Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pacheco, B.M., de Oliveira, V.H.R., Antunes, A.B.F., Pedro, S.D.S., Silva, D., for the Alzheimer’s Disease Neuroimaging Initiative. (2023). Does Pre-training on Brain-Related Tasks Results in Better Deep-Learning-Based Brain Age Biomarkers?. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14196. Springer, Cham. https://doi.org/10.1007/978-3-031-45389-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45389-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45388-5

  • Online ISBN: 978-3-031-45389-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics