Skip to main content

Applying Reinforcement Learning for Multiple Functions in Swarm Intelligence

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

Swarm intelligence (SI) algorithms have become popular due to their self-learning characteristics and adaptability to external changes. They can find reasonable solutions to complex problems without in-depth knowledge. Much of the success of these algorithms comes from balancing the exploration and exploitation tasks. This work evaluates the application and performance of a reinforcement learning approach applied to a well-known swarm intelligence algorithm, Particle Swarm Optimization (PSO). We use the reinforcement learning agent Proximal Policy Optimization (PPO) to dynamically change the swarm communication topology according to the problem. We analyze the PSO’s behavior, influenced by the reinforcement learning agent, through methods such as interaction networks and fitness analysis. We show that the RL approach can transfer the knowledge learned from one function to other functions, and that dynamic changes of topology over time makes PSO much more efficient than setting only one specific topology, even when using a Dynamic topology. Our results then suggest that changing topologies might be more efficient than having a Dynamic topology, and that indeed Local and Global topologies have an important role in the best swarm performance. Our results take a step further on explaining the performance of SI and automatizing their use for non-experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://docs.ray.io/en/latest/rllib/index.html.

References

  1. Bansal, J.C., Singh, P.K., Pal, N.R. (eds.): Evolutionary and Swarm Intelligence Algorithms, Studies in Computational Intelligence, vol. 779. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-91341-4

  2. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(1), 29–41 (1996). https://doi.org/10.1109/3477.484436

  3. Engstrom, L., et al.: Implementation matters in deep policy gradients: a case study on PPO and TRPO (2020)

    Google Scholar 

  4. Junior, M.A.C.O., Bastos Filho, C.J.A., Menezes, R.: Using network science to define a dynamic communication topology for particle swarm optimizers. In: Menezes, R., Evsukoff, A., González, M. (eds.) Complex Networks. Studies in Computational Intelligence, vol. 424, pp. 39–47. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30287-9_5

  5. Karaboga, D., et al.: An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes University, Engineering faculty (2005)

    Google Scholar 

  6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Network, vol. 4, pp. 1942–1948 (1995). https://doi.org/10.1109/ICNN.1995.488968

  7. Kennedy, J.: Swarm Intelligence, pp. 187–219. Springer, US, Boston, MA (2006)

    Google Scholar 

  8. Lira, R.C., Macedo, M., Siqueira, H.V., Bastos-Filho, C.: Integrating reinforcement learning and optimization task: Evaluating an agent to dynamically select PSO communication topology. In: Tan, Y., Shi, Y., Luo, W. (eds.) Advances in Swarm Intelligence. ICSI 2023. LNCS, vol. 13969, pp. 38–48. Springer, Cham (2023).https://doi.org/10.1007/978-3-031-36625-3_4

  9. Macedo, M., et al.: Overview on binary optimization using swarm-inspired algorithms. IEEE Access 9, 149814–149858 (2021). https://doi.org/10.1109/ACCESS.2021.3124710

    Article  Google Scholar 

  10. Oliveira, M., Bastos-Filho, C.J.A., Menezes, R.: Towards a network-based approach to analyze particle swarm optimizers. In: 2014 IEEE Symposium on Swarm Intelligence, pp. 1–8 (2014). https://doi.org/10.1109/SIS.2014.7011791

  11. Oliveira, M., Bastos-Filho, C.J.A., Menezes, R.: Using network science to assess particle swarm optimizers. Soc. Netw. Anal. Min. 5(1), 3 (2015). https://doi.org/10.1007/s13278-015-0245-5

    Article  Google Scholar 

  12. Oliveira, M., Pinheiro, D., Andrade, B., Bastos-Filho, C., Menezes, R.: Communication diversity in particle swarm optimizers. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 77–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_7

    Chapter  Google Scholar 

  13. Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence: a survey. Int. J. Bio-Inspired Comput. 3(1), 1–16 (2011). https://doi.org/10.1504/IJBIC.2011.038700

  14. Pervaiz, S., Ul-Qayyum, Z., Bangyal, W.H., Gao, L., Ahmad, J.: A systematic literature review on particle swarm optimization techniques for medical diseases detection. Comput. Math. Methods Med. 2021, 1–10 (2021). https://doi.org/10.1155/2021/5990999

    Article  Google Scholar 

  15. Plevris, V., Solorzano, G.: A collection of 30 multidimensional functions for global optimization benchmarking. Data 7(4), 46 (2022). https://doi.org/10.3390/data7040046

    Article  Google Scholar 

  16. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: an overview. Swarm Intell. 1, 33–57 (2007)

    Article  Google Scholar 

  17. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms (2017). https://doi.org/10.48550/ARXIV.1707.06347

  18. da Silveira Câmara Augusto, J.P., dos Santos Nicolau, A., Schirru, R.: PSO with dynamic topology and random keys method applied to nuclear reactor reload. Progr. Nucl. Energy. 83, 191–196 (2015). https://doi.org/10.1016/j.pnucene.2015.03.009

  19. Wauters, T., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: Boosting metaheuristic search using reinforcement learning. In: Talbi, EG. (eds.) Hybrid Metaheuristics. Studies in Computational Intelligence, vol 434, pp. 432–452. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30671-6_17

  20. Wu, D., Wang, G.G.: Employing reinforcement learning to enhance particle swarm optimization methods. Eng. Optim. 54(2), 329–348 (2022). https://doi.org/10.1080/0305215X.2020.1867120

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, Y., Pi, D.: A reinforcement learning-based communication topology in particle swarm optimization. Neural Comput. Appl. 32(14), 10007–10032 (2020). https://doi.org/10.1007/s00521-019-04527-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Federal Institute of Pernambuco (IFPE), Brazilian National Council for Scientific and Technological Development (CNPq), processes number 40558/2018-5, 315298/2020-0, and Araucaria Foundation, process number 51497, for their financial support. Mariana Macedo was supported by the Artificial and Natural Intelligence Toulouse Institute (ANITI) - Institut 3iA: ANR-19-PI3A-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Cesar Lira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ribeiro, A.A.V.E., Lira, R.C., Macedo, M., Siqueira, H.V., Bastos-Filho, C. (2023). Applying Reinforcement Learning for Multiple Functions in Swarm Intelligence. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14196. Springer, Cham. https://doi.org/10.1007/978-3-031-45389-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45389-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45388-5

  • Online ISBN: 978-3-031-45389-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics