Skip to main content

Deep Reinforcement Learning for Voltage Control in Power Systems

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

The great complexity and size of electrical power systems makes their operation and control a challenging task. Maintaining a stable voltage profile to assure the security and stability of the system is one of many tasks that must be conducted daily by power system operators and its automatic control equipment. This work proposes a deep reinforcement learning framework for controlling the equipment responsible for keeping the voltages across the system buses within their limits. More specifically, a smart agent that is capable of deciding the best course of action in order to keep the system’s voltages within a specified range while taking into account system’s conditions is proposed. Besides the traditional deep reinforcement learning approach, three novel reinforcement learning variations named windowed, ensemble and windowed ensemble Q-Learning, which alter the agent’s learning process for voltage control, are presented and tested on IEEE 13, 37 and 123 bus systems, simulated on OpenDSS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baran, M.: Ming-Yung Hsu: Volt/VAr control at distribution substations. IEEE Trans. Power Syst. 14(1), 312–318 (1999). https://doi.org/10.1109/59.744549. https://ieeexplore.ieee.org/document/744549/

  2. Borozan, V., Baran, M., Novosel, D.: Integrated volt/VAr control in distribution systems. In: 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 01CH37194), Columbus, OH, USA, vol. 3, pp. 1485–1490. IEEE (2001). https://doi.org/10.1109/PESW.2001.917328. http://ieeexplore.ieee.org/document/917328/

  3. Corsi, S.: Voltage Control and Protection in Electrical Power Systems: From System Components to Wide-Area Control. Springer, London (2015). https://doi.org/10.1007/978-1-4471-6636-8

    Book  Google Scholar 

  4. Custódio, G., Ochoa, L., Trindade, F., Alpcan, T.: Using Q-learning for OLTC voltage regulation in PV-rich distribution networks (2020)

    Google Scholar 

  5. Diao, R., Wang, Z., Shi, D., Chang, Q., Duan, J., Zhang, X.: Autonomous voltage control for grid operation using deep reinforcement learning (2019). http://arxiv.org/abs/1904.10597

  6. Franco, J.F., Rider, M.J., Lavorato, M., Romero, R.: A mixed-integer LP model for the optimal allocation of voltage regulators and capacitors in radial distribution systems. Int. J. Electr. Power Energy Syst. 48, 123–130 (2013). https://doi.org/10.1016/j.ijepes.2012.11.027. https://linkinghub.elsevier.com/retrieve/pii/S0142061512006801

  7. Gallego, R., Monticelli, A., Romero, R.: Optimal capacitor placement in radial distribution networks. IEEE Trans. Power Syst. 16(4), 630–637 (2001). https://doi.org/10.1109/59.962407. https://ieeexplore.ieee.org/document/962407/

  8. Gu, Z., Rizy, D.: Neural networks for combined control of capacitor banks and voltage regulators in distribution systems. IEEE Trans. Power Deliv. 11(4), 1921–1928 (1996). https://doi.org/10.1109/61.544277. https://ieeexplore.ieee.org/document/544277/

  9. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning (2016). http://arxiv.org/abs/1509.06461

  10. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  11. Homaee, O., Zakariazadeh, A., Jadid, S.: Real-time voltage control algorithm with switched capacitors in smart distribution system in presence of renewable generations. Int. J. Electr. Power Energy Syst. 54, 187–197 (2014). https://doi.org/10.1016/j.ijepes.2013.07.010. http://linkinghub.elsevier.com/retrieve/pii/S0142061513003074

  12. Hu, Z., Wang, X., Chen, H., Taylor, G.: Volt/Var control in distribution systems using a time-interval based approach. IEE Proc.-Gener. Transm. Distrib. 150(5), 548 (2003). https://doi.org/10.1049/ip-gtd:20030562

    Article  Google Scholar 

  13. Khanabadi, M., Ghasemi, H., Doostizadeh, M.: Optimal transmission switching considering voltage security and N-1 contingency analysis. IEEE Trans. Power Syst. 28(1), 542–550 (2013). https://doi.org/10.1109/TPWRS.2012.2207464. https://ieeexplore.ieee.org/document/6253283/

  14. Levitin, G., Kalyuzhny, A., Shenkman, A., Chertkov, M.: Optimal capacitor allocation in distribution systems using a genetic algorithm and a fast energy loss computation technique. IEEE Trans. Power Deliv. 15(2), 623–628 (2000). https://doi.org/10.1109/61.852995. https://ieeexplore.ieee.org/document/852995/

  15. Liang, R.H., Chen, Y.K., Chen, Y.T.: Volt/Var control in a distribution system by a fuzzy optimization approach. Int. J. Electr. Power Energy Syst. 33(2), 278–287 (2011). https://doi.org/10.1016/j.ijepes.2010.08.023. https://linkinghub.elsevier.com/retrieve/pii/S0142061510001596

  16. Liu, Y., Zhang, P., Qiu, X.: Optimal volt/var control in distribution systems. Int. J. Electr. Power Energy Syst. 24(4), 271–276 (2002). https://doi.org/10.1016/S0142-0615(01)00032-1. https://linkinghub.elsevier.com/retrieve/pii/S0142061501000321

  17. Meier, A.V.: Electric Power Systems: A Conceptual Introduction. Wiley survival guides in engineering and science, IEEE Press: Wiley-Interscience, Hoboken (2006). oCLC: ocm62616191

    Google Scholar 

  18. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  19. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Google Scholar 

  20. Niknam, T.: A new approach based on ant colony optimization for daily Volt/Var control in distribution networks considering distributed generators. Energy Convers. Manag. 49(12), 3417–3424 (2008). https://doi.org/10.1016/j.enconman.2008.08.015. https://linkinghub.elsevier.com/retrieve/pii/S0196890408003087

  21. Niknam, T., Firouzi, B.B., Ostadi, A.: A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering distributed generators. Appl. Energy 87(6), 1919–1928 (2010). https://doi.org/10.1016/j.apenergy.2010.01.003. https://linkinghub.elsevier.com/retrieve/pii/S030626191000005X

  22. Rashid, M.H. (ed.): Electric renewable energy systems. Elsevier/AP, Academic Press is an imprint of Elsevier, Amsterdam (2016)

    Google Scholar 

  23. Ribeiro, L.C., Schumann Minami, J.P.O., Bonatto, B.D., Ribeiro, P.F., de Souza, A.C.Z.: Voltage control simulations in distribution systems with high penetration of PVs using the OpenDSS. In: 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE), pp. 1–6. IEEE. https://doi.org/10.1109/SBSE.2018.8395639. https://ieeexplore.ieee.org/document/8395639/

  24. Roytelman, I., Wee, B., Lugtu, R.: Volt/var control algorithm for modern distribution management system. IEEE Trans. Power Syst. 10(3), 1454–1460 (1995). https://doi.org/10.1109/59.466504. https://ieeexplore.ieee.org/document/466504/

  25. Saric, A.T., Stankovic, A.M.: A robust algorithm for Volt/Var control. In: 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA, pp. 1–8. IEEE (2009). https://doi.org/10.1109/PSCE.2009.4840211. https://ieeexplore.ieee.org/document/4840211/

  26. Schneider, K.P., et al.: Analytic considerations and design basis for the IEEE distribution test feeders. IEEE Trans. Power Syst. 33(3), 3181–3188 (2018). https://doi.org/10.1109/TPWRS.2017.2760011. https://ieeexplore.ieee.org/document/8063903/

  27. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Adaptive Computation and Machine Learning Series, 2nd edn. The MIT Press, Cambridge (2018)

    Google Scholar 

  28. Vlachogiannis, J., Hatziargyriou, N.: Reinforcement learning for reactive power control. IEEE Trans. Power Syst. 19(3), 1317–1325 (2004). https://doi.org/10.1109/TPWRS.2004.831259. https://ieeexplore.ieee.org/document/1318666/

  29. Wood, A.J., Wollenberg, B.F., Sheblé, G.B.: Power Generation, Operation, and Control, 3rd edn. Hoboken, Wiley-IEEE (2013)

    Google Scholar 

  30. Xu, H., Domínguez-García, A.D., Sauer, P.W.: Optimal tap setting of voltage regulation transformers using batch reinforcement learning. IEEE Trans. Power Syst. 35(3), 1990–2001 (2019). https://doi.org/10.1109/TPWRS.2019.2948132. https://arxiv.org/abs/1807.10997

  31. Yang, Q., Wang, G., Sadeghi, A., Giannakis, G.B., Sun, J.: Two-Timescale Voltage Control in Distribution Grids Using Deep Reinforcement Learning. arXiv:1904.09374 (2019)

  32. Zhang, W., Liu, Y.: Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm. IEEE Trans. Power Syst. 30(9), 525–532 (2019). https://doi.org/10.1016/j.ijepes.2008.04.005. https://linkinghub.elsevier.com/retrieve/pii/S0142061508000380

Download references

Acknowledgments

The authors would like to thank Companhia de Transmissão de Energia Elétrica Paulista (ISA-CTEEP) for the financial support to Project PD-00068-0044-2019 - intelligent real-time decision support tool for transmission operations centers, developed under the Research and Development program of the National Electric Energy Agency (ANEEL R &D), which the engineering company carried out Radix Engenharia e Software S/A, Rio de Janeiro, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela T. Justino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barg, M.W. et al. (2023). Deep Reinforcement Learning for Voltage Control in Power Systems. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14196. Springer, Cham. https://doi.org/10.1007/978-3-031-45389-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45389-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45388-5

  • Online ISBN: 978-3-031-45389-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics