Skip to main content

Constructive Machine Learning and Hierarchical Multi-label Classification for Molecules Design

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14196))

Included in the following conference series:

  • 244 Accesses

Abstract

Constructive Machine Learning (CML) is a research field that uses algorithms to generate new instances, similar but not identical to existing ones. It has been widely used to assist the discovery of new drug-like molecules. This is very challenging, given that the search space is discrete, unstructured and enormous. In this work we use CML to learn the intrinsic rules of datasets of molecules to generate novel ones. The chosen CML methods can be divided in two sub groups, text-based and graph oriented. Considering different possibilities to evaluate the methods and the generated molecules, we propose classifying generated molecules in a taxonomy, using a hierarchical multi-label classifier previously trained in a dataset of molecules with known taxonomy information. In this way, it is possible to predict properties and verify the relevance of the generated molecules to existing taxonomies. We also propose a hierarchical diversity measure to compare groups of molecules based on their taxonomy information. The measure showed coherent results and is faster to calculate than the commonly used external diversity measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://dtai.cs.kuleuven.be/clus/.

  2. 2.

    https://github.com/yendorr/gt4sd.

References

  1. Antoniou, G., Harmelen, F.v.: Web ontology language: owl. In: Handbook on ontologies, pp. 67–92. Springer (2004)

    Google Scholar 

  2. Bajusz, D., Rácz, A., Héberger, K.: Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform. 7 (2015)

    Google Scholar 

  3. Benhenda, M.: ChemGAN challenge for drug discovery: can AI reproduce natural chemical diversity? arXiv preprint arXiv:1708.08227 (2017)

  4. Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S., Hopkins, A.L.: Quantifying the chemical beauty of drugs. Nat. Chem. 4(2), 90–98 (2012)

    Article  Google Scholar 

  5. Bjerrum, E.J., Threlfall, R.: Molecular generation with recurrent neural networks (RNNs). arXiv preprint arXiv:1705.04612 (2017)

  6. Brown, N., Ertl, P., Lewis, R., Luksch, T., Reker, D., Schneider, N.: Artificial intelligence in chemistry and drug design. J. Comput. Aided Mol. Des. 34(7), 709–715 (2020). https://doi.org/10.1007/s10822-020-00317-x

    Article  Google Scholar 

  7. Cao, D.S., Xu, Q., Hu, Q., Liang, Y.Z.: Manual for ChemoPy (2013)

    Google Scholar 

  8. Degtyarenko, K., et al.: ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 36(suppl 1), D344–D350 (2007)

    Article  Google Scholar 

  9. DiMasi, J.A., Grabowski, H.G., Hansen, R.W.: Innovation in the pharmaceutical industry: new estimates of r &d costs. J. Health Econ. 47, 20–33 (2016)

    Article  Google Scholar 

  10. Elton, D.C., Boukouvalas, Z., Fuge, M.D., Chung, P.W.: Deep learning for molecular design-a review of the state of the art. Mol. Syst. Des. Eng. 4(4), 828–849 (2019)

    Article  Google Scholar 

  11. Evans, L., Phipps, R., Shanu-Wilson, J., Steele, J., Wrigley, S.: Methods for metabolite generation and characterization by NMR. In: Ma, S., Chowdhury, S.K. (eds.) Identification and Quantification of Drugs, Metabolites, Drug Metabolizing Enzymes, and Transporters (Second Edition), pp. 119–150. Elsevier, Amsterdam, second edition. (2020)

    Google Scholar 

  12. Foster, D.: Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play. O’Reilly Media (2019)

    Google Scholar 

  13. Gaulton, A., et al.: The ChEMBL database in 2017. Nucleic Acids Res. 45(D1), D945–D954 (2017)

    Article  Google Scholar 

  14. Gómez-Bombarelli, R., et al.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4(2), 268–276 (2018)

    Article  Google Scholar 

  15. Gupta, A., Müller, A.T., Huisman, B.J., Fuchs, J.A., Schneider, P., Schneider, G.: Generative recurrent networks for de novo drug design. Mol. Inf. 37(1–2), 1700111 (2018)

    Article  Google Scholar 

  16. Jolliffe, I.: Principal component analysis. Encyclopedia of Statistics in Behavioral Science (2005)

    Google Scholar 

  17. Kadurin, A., Nikolenko, S., Khrabrov, K., Aliper, A., Zhavoronkov, A.: druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol. Pharm. 14(9), 3098–3104 (2017)

    Article  Google Scholar 

  18. Kim, S., et al.: PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 47(D1), D1102–D1109 (2019)

    Article  Google Scholar 

  19. Lipinski, C.A.: Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 1(4), 337–341 (2004)

    Article  Google Scholar 

  20. Marwat, S.K., ur Rehman, F.: Medicinal and pharmacological potential of harmala (peganum harmala l.) seeds. In: Preedy, V.R., Watson, R.R., Patel, V.B. (eds.) Nuts and Seeds in Health and Disease Prevention, pp. 585–599. Academic Press, San Diego (2011)

    Google Scholar 

  21. Maziarz, K., et al.: Learning to extend molecular scaffolds with structural motifs. arXiv preprint arXiv:2103.03864 (2021)

  22. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  23. Mitchell, J.B.: Machine learning methods in chemoinformatics. Wiley Interdisc. Rev. Comput. Mol. Sci. 4(5), 468–481 (2014)

    Article  Google Scholar 

  24. Olivecrona, M., Blaschke, T., Engkvist, O., Chen, H.: Molecular de-novo design through deep reinforcement learning. J. cheminform. 9(1), 48 (2017)

    Article  Google Scholar 

  25. Papamakarios, G., Pavlakou, T., Murray, I.: Masked autoregressive flow for density estimation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  26. Sanchez-Lengeling, B., Outeiral, C., Guimaraes, G.L., Aspuru-Guzik, A.: Optimizing distributions over molecular space. an objective-reinforced generative adversarial network for inverse-design chemistry (organic). ChemRxiv (2017)

    Google Scholar 

  27. Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., Tang, J.: GraphAF: a flow-based autoregressive model for molecular graph generation. arXiv preprint arXiv:2001.09382 (2020)

  28. Team, G.: GT4SD (Generative Toolkit for Scientific Discovery) (2022)

    Google Scholar 

  29. Vallender, S.: Calculation of the Wasserstein distance between probability distributions on the line. Theor. Probab. Appl. 18(4), 784–786 (1974)

    Article  Google Scholar 

  30. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Mach. Learn. 73(2), 185–214 (2008)

    Article  MATH  Google Scholar 

  31. Wegner, J.K., et al.: Cheminformatics. Commun. ACM 55(11), 65–75 (2012)

    Article  Google Scholar 

  32. Weininger, D.: Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

    Article  Google Scholar 

  33. Xiong, J., Xiong, Z., Chen, K., Jiang, H., Zheng, M.: Graph neural networks for automated de novo drug design. Drug Discovery Today 26(6), 1382–1393 (2021)

    Article  Google Scholar 

  34. You, J., Liu, B., Ying, Z., Pande, V., Leskovec, J.: Graph convolutional policy network for goal-directed molecular graph generation. In: Advances in neural information processing systems, vol. 31 (2018)

    Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The authors also thank the Brazilian research agencies FAPESP and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Cerri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Souza Silva, R.R., Cerri, R. (2023). Constructive Machine Learning and Hierarchical Multi-label Classification for Molecules Design. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14196. Springer, Cham. https://doi.org/10.1007/978-3-031-45389-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45389-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45388-5

  • Online ISBN: 978-3-031-45389-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics