Skip to main content

AutoMMLC: An Automated and Multi-objective Method for Multi-label Classification

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14196))

Included in the following conference series:

  • 222 Accesses

Abstract

Automated Machine Learning (AutoML) has achieved high popularity in recent years. However, most of these studies have investigated alternatives to single-label classification problems, presenting a need for more investigations in the multi-label classification scenario. From the AutoML point of view, the few studies on multi-label classification focus on automatically finding the best models based on mono-objective optimization. These tools train several multi-label classifiers in search of the one with the best performance in a single objective optimization process. In this work, we propose AutoMMLC, a new multi-objective AutoML method for multi-label classification, to find the best models that maximize the f-score measure and minimize the training time. Experiments were carried out with ten multi-label datasets and different versions of the proposed method using two multi-objective optimization algorithms: Multi-objective Random Search and Non-Dominated Sorting Genetic Algorithm II. We evaluated the Pareto front obtained by these methods through the hypervolume metric. The Wilcoxon test demonstrated that AutoMMLC versions had similar results for this metric. Multi-label Classification (MLC) algorithms were obtained from the Pareto frontiers through the Frugality Score and compared with the baseline algorithms. The Friedman test demonstrated that the MLC algorithms from AutoMMLC versions had equal performances to f-score and training time. Furthermore, they had better results than baseline algorithms for f-score and better results than most baseline algorithms for training time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://mulan.sourceforge.net/datasets-mlc.html.

  2. 2.

    https://github.com/alinedelvalle/AutoMMLC.git.

  3. 3.

    https://github.com/alinedelvalle/AutoMMLC/blob/main/BRACIS_Supplementary_Material.pdf.

References

  1. Blank, J., Deb, K.: Pymoo: multi-objective optimization in python. IEEE Access 8, 89497–89509 (2020)

    Article  Google Scholar 

  2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  3. Deb, K., Deb, K.: Multi-Objective Optimization, pp. 403–449. Springer, US, Boston, MA (2014)

    Google Scholar 

  4. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Evchenko, M.M.: Frugal learning:applying machine learning with minimal resources (2016)

    Google Scholar 

  6. Fonseca, C., Paquete, L., Lopez-Ibanez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1157–1163 (2006)

    Google Scholar 

  7. He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. Knowl.-Based Syst. 212, 106622 (2021)

    Article  Google Scholar 

  8. Karl, F., et al.: Multi-objective hyperparameter optimization - an overview (2022)

    Google Scholar 

  9. Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012), best Papers of Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA’2011)

    Google Scholar 

  10. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Read, J., Reutemann, P., Pfahringer, B., Holmes, G.: MEKA: a multi-label/multi-target extension to weka. J. Mach. Learn. Res. 17(21), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  12. de Sá, A.G.C., Freitas, A.A., Pappa, G.L.: Automated selection and configuration of multi-label classification algorithms with grammar-based genetic programming. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) Parallel Problem Solving from Nature - PPSN XV, pp. 308–320. Springer International Publishing, Cham (2018)

    Google Scholar 

  13. de Sá, A.G.C., Pappa, G.L., Freitas, A.A.: Towards a method for automatically selecting and configuring multi-label classification algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1125–1132. GECCO 2017, Association for Computing Machinery, New York, NY, USA (2017)

    Google Scholar 

  14. de Sá, A.G.C., Pimenta, C.G., Pappa, G.L., Freitas, A.A.: A robust experimental evaluation of automated multi-label classification methods. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 175–183. GECCO 2020, Association for Computing Machinery, New York, NY, USA (2020)

    Google Scholar 

  15. Sechidis, K., Tsoumakas, G., Vlahavas, I.: On the stratification of multi-label data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) Machine Learning and Knowledge Discovery in Databases, pp. 145–158. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Szymanski, P., Kajdanowicz, T.: Scikit-multilearn: a scikit-based python environment for performing multi-label classification. J. Mach. Learn. Res. 20(1), 209–230 (2019)

    Google Scholar 

  17. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining Multi-Label Data, pp. 667–685. Springer, US, Boston, MA (2010)

    Google Scholar 

  18. Wever, M., Tornede, A., Mohr, F., Hüllermeier, E.: AutoML for multi-label classification: overview and empirical evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 43(09), 3037–3054 (2021)

    Article  Google Scholar 

  19. Wever, M.D., Mohr, F., Tornede, A., Hüllermeier, E.: Automating multi-label classification extending ML-Plan. In: 6th ICML Workshop on Automated Machine Learning, Long Beach, CA, USA (2019)

    Google Scholar 

  20. Zöller, M.A., Huber, M.F.: Benchmark and survey of automated machine learning frameworks. J. Artif. Int. Res. 70, 409–472 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian research agencies FAPESP, CAPES and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Marques Del Valle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Del Valle, A.M., Mantovani, R.G., Cerri, R. (2023). AutoMMLC: An Automated and Multi-objective Method for Multi-label Classification. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14196. Springer, Cham. https://doi.org/10.1007/978-3-031-45389-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45389-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45388-5

  • Online ISBN: 978-3-031-45389-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics