Skip to main content

Multiple Object Tracking in Native Bee Hives: A Case Study with Jataí in the Field

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

Artificial intelligence approaches, such as computer vision, can help better understand the behavior of bees and management. However, the accurate detection and tracking of bee species in the field remain challenging for traditional methods. In this study, we compared YOLOv7 and YOLOv8, two state-of-the-art object detection models, aiming to detect and classify Jataí Brazilian native bees using a custom dataset. Also, we integrated two tracking algorithms (Tracking based on Euclidean distance and ByteTrack) with YOLOv8, yielding a mean average precision (mAP50) of 0.969 and mAP50–95 of 0.682. Additionally, we introduced an optical flow algorithm to monitor beehive entries and exits. We evaluated our approach by comparing it to human performance benchmarks for the same task with and without the aid of technology. Our findings highlight occlusions and outliers (anomalies) as the primary sources of errors in the system. We must consider a coupling of both systems in practical applications because ByteTrack counts bees with an average relative error of 11%, EuclidianTrack monitors incoming bees with 9% (21% if there are outliers), both monitor bees that leave, ByteTrack with 18% if there are outliers, and EuclidianTrack with 33% otherwise. In this way, it is possible to reduce errors of human origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hallmann, C.A., et al.: More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, 18–22 (2017). https://doi.org/10.1371/journal.pone.0185809

    Article  Google Scholar 

  2. Arruda, H., Imperatriz-Fonseca, V., de Souza, P., Pessin, G.: Identifying bee species by means of the foraging pattern using machine learning. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2019). https://doi.org/10.1109/IJCNN.2018.8489608

  3. Kuan, A.C., et al.: Sensitivity analyses for simulating pesticide impacts on honey bee colonies. Ecol. Model. 376, 15–27 (2018). https://doi.org/10.1016/j.ecolmodel.2018.02.010

    Article  Google Scholar 

  4. Giannini, T.C., et al.: Climate change in the Eastern Amazon: crop-pollinator and occurrence-restricted bees are potentially more affected. Reg. Environ. Change 20(1), 1–12 (2020). https://doi.org/10.1007/s10113-020-01611-y

    Article  Google Scholar 

  5. Macharia, J.M., Gikungu, M.W., Karanja, R., Okoth, S.: Managed bees as pollinators and vectors of bio control agent against grey mold disease in strawberry plantations. Afr. J. Agric. 16(12), 1674–1680 (2020). https://doi.org/10.5897/AJAR2020.15203

    Article  Google Scholar 

  6. Sánchez-Bayo, F., Wyckhuys, K.A.G.: Worldwide decline of the entomofauna: a review of its drivers. Biol. Cons. 232, 8–27 (2019). https://doi.org/10.1016/j.biocon.2019.01.020

    Article  Google Scholar 

  7. Borges, R.C., Padovani, K., Imperatriz-Fonseca, V.L., Giannini, T.C.: A dataset of multi-functional ecological traits of Brazilian bees. Sci. Data 7(1), 1–9 (2020). https://doi.org/10.1038/s41597-020-0461-3

    Article  Google Scholar 

  8. Gomes, P.A.B., et al.: An Amazon stingless bee foraging activity predicted using recurrent artificial neural networks and attribute selection. Nat. Res. 10(1), 1–12 (2020). https://doi.org/10.1038/s41598-019-56352-8

    Article  Google Scholar 

  9. Filipiak, M.: A better understanding of bee nutritional ecology is needed to optimize conservation strategies for wild bees - the application of ecological stoichiometry. Insects 9(3), 1–13 (2018). https://doi.org/10.3390/insects9030085

    Article  Google Scholar 

  10. Marstaller, J., Tausch, F., Stock, S.: DeepBees - building and scaling convolutional neuronal nets for fast and large-scale visual monitoring of bee hives. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 271–278. (2019). https://doi.org/10.1109/ICCVW.2019.00036

  11. Xia, D., Chen, P., Wang, B., Zhang, J., Xie, C.: Insect detection and classification based on an improved convolutional neural network. Sensors 18(12), 1–12 (2018). https://doi.org/10.3390/s18124169

    Article  Google Scholar 

  12. Abreu, V.H.R., Pimentel, A.D.A., Absy, M.L., Rech, A.R.: Pollen sources used by Frieseomelitta Ihering 1912 (Hymenoptera: Apidae: Meliponini) bees along the course of the Rio Negro, Amazonas. Brazil. Acta Botanica Brasilica 24(2), 371–383 (2020). https://doi.org/10.1590/0102-33062019abb0391

    Article  Google Scholar 

  13. Júnior, T.C., Rieder, R.: Automatic identification of insects from digital images: a survey. Comput. Electron. Agric. 178(5), 105784 (2020). https://doi.org/10.1016/j.compag.2020.105784

    Article  Google Scholar 

  14. Zhong, Y., Gao, J., Lei, Q., Zhou, Y.: A vision-based counting and recognition system for flying insects in intelligent agriculture. Sensors 18(5), 1489 (2018). https://doi.org/10.3390/s18051489

    Article  Google Scholar 

  15. Qing, Y., et al.: Development of an automatic monitoring system for rice light-trap pests based on machine vision. J. Integr. Agric. 19(10), 2500–2513 (2020). https://doi.org/10.1016/S2095-3119(20)63168-9

    Article  Google Scholar 

  16. Shen, Y., Zhou, H., Li, J., Jian, F., Jayas, D.S.: Detection of stored-grain insects using deep learning. Comput. Electron. Agric. 145, 319–325 (2018). https://doi.org/10.1016/j.compag.2017.11.039

    Article  Google Scholar 

  17. Liu, L., et al.: PestNet: an end-to-end deep learning approach for large-scale multi-class pest detection and classification. IEEE Acess 7, 45301–45312 (2019). https://doi.org/10.1109/ACCESS.2019.2909522

    Article  Google Scholar 

  18. Fujioka, H., Abe, M.S., Okada, Y.: Ant activity-rest rhythms vary with age and interaction frequencies of workers. Behav. Ecol. Sociobiol. 73(3), 30 (2019). https://doi.org/10.1007/s00265-019-2641-8

    Article  Google Scholar 

  19. Fujioka, H., Abe, M.S., Okada, Y.: Individual ants do not show activity-rest rhythms in nest conditions. J. Biol. Rhythms 36(3), 297–310 (2021). https://doi.org/10.1177/07487304211002934

    Article  Google Scholar 

  20. Ratnayake, M.N., Dyer, A.G., Dorin, A.: Tracking individual honeybees among wildflower clusters with computer vision-facilitated pollinator monitoring. PLoS ONE 16(2), e0239504 (2021). https://doi.org/10.1371/journal.pone.0239504

    Article  Google Scholar 

  21. Lima, M.C.F., Leandro, M.E.D.A., Valero, C., Coronel, L.C.P., Bazzo, C.O.G.: Automatic detection and monitoring of insect pests - a review. Agriculture 10(5), 161 (2020). https://doi.org/10.3390/agriculture10050161

    Article  Google Scholar 

  22. Imirzian, N., et al.: Automated tracking and analysis of ant trajectories shows variation in forager exploration. Sci. Rep. 9(1), 1 (2019). https://doi.org/10.1038/s41598-019-49655-3

    Article  Google Scholar 

  23. Sclocco, A., Ong, S.J.Y., Aung, S.Y.P., Teseo, S.: Integrating real-time data analysis into automatic tracking of social insects. R. Soc. Open Sci. 8(3), 202033 (2021). https://doi.org/10.1098/rsos.202033

    Article  Google Scholar 

  24. Tathawee, T., Wattanachaiyingcharoen, W., Suwannakom, A., Prasarnpun, S.: Flash communication pattern analysis of fireflies based on computer vision. Int. J. Adv. Intell. Inf. 6(1), 60–71 (2020). https://doi.org/10.26555/ijain.v6i1.367

    Article  Google Scholar 

  25. Bjerge, K., Nielsen, J.B., Sepstrup, M.V., Helsing-Nielsen, F., Hoye, T.T.: An automated light trap to monitor moths (Lepidoptera) using computer vision-based tracking and deep learning. Sensors 21(2), 343 (2021). https://doi.org/10.3390/s21020343

    Article  Google Scholar 

  26. Howard, S.R., Ratnayake, M.N., Dyer, A.G., Garcia, J.E., Dorin, A.: Towards precision apiculture: traditional and technological insect monitoring methods in strawberry and raspberry crop polytunnels tell different pollination stories. PLoS ON 16(5), e0251572 (2021). https://doi.org/10.1371/journal.pone.0251572

    Article  Google Scholar 

  27. Perez-Cham, O.E., et al.: Parallelization of the honeybee search algorithm for object tracking. Appl. Sci. 10(6), 2122 (2020). https://doi.org/10.3390/app10062122

    Article  Google Scholar 

  28. Sun, C., Gaydecki, P.: A visual tracking system for honey bee (Hymenoptera: Apidae) 3D flight trajectory reconstruction and analysis. J. Insect Sci. 21(2), 1–12 (2021). https://doi.org/10.1093/jisesa/ieab023

    Article  Google Scholar 

  29. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  30. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  31. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2016)

    Google Scholar 

  32. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint: arXiv:1804.02767 (2018)

  33. Bochkovskiy, A., Wang, C., Liao, H.M.: YOLOv4: optimal speed and accuracy of object detection. Cornell Univ. arXiv preprint: arXiv:2004.10934 (2020)

  34. Jocher, G.: ultralytics/yolov5: v3.1. (2020). https://doi.org/10.5281/zenodo.4154370

  35. Li, C., et al.: YOLOv6: a single-stage object detection framework for industrial applications. arXiv preprint: arXiv:2207.02696 (2022)

  36. Wang, C., Bochkovskiy, A., Liao, H.M.: Designing network design strategies through gradient path analysis. arXiv preprint: arXiv:2211.04800 (2022)

  37. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics v8. (2023)

    Google Scholar 

  38. Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box. In: Proceedings of the European Conference on Computer Vision (2022)

    Google Scholar 

  39. Dendorfer, P., et al.: MOT20: a benchmark for multi object tracking in crowded scenes. arXiv:2003.09003 [cs] (2020)

Download references

Acknowledgments

The authors would like to thank the Universidade de São Paulo (USP BeeKeep CS - https://beekeep.pcs.usp.br), the Empresa Brasileira de Pesquisa Agropecuária (Embrapa), and the Associação Brasileira de Estudo das Abelhas (A.B.E.L.H.A. - https://abelha.org.br) by the data and videos. People who allowed filmings on their properties. To the Laboratório Multiusuário de Práticas Simuladas (LaMPS - https://lamps.medicina.ufop.br) and the Laboratório de Controle e Automação Multiusuário (LABCAM) for the infrastructure and equipment provided. Google Collaboratory by the technologies that make AI research possible with scarce resources. To Carlos J. Pereira, Eduardo Carvalho, Levi W. R. Filho, and André A. Santos (Instituto Tecnológico Vale) along with Diego M. Alberto (Efí) for their support with the computational methods. This research received financial support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Financing code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo R. V. Leocádio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leocádio, R.R.V., Segundo, A.K.R., Pessin, G. (2023). Multiple Object Tracking in Native Bee Hives: A Case Study with Jataí in the Field. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14197. Springer, Cham. https://doi.org/10.1007/978-3-031-45392-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45392-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45391-5

  • Online ISBN: 978-3-031-45392-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics