Skip to main content

Detecting Multiple Epidemic Sources in Network Epidemics Using Graph Neural Networks

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

Epidemics start within a network because of the existence of epidemic sources that spread information over time to other nodes. Data about the exact contagion pattern among nodes is often not available, besides a simple snapshot characterizing nodes as infected, or not. Thus, a fundamental problem in network epidemic is identifying the set of source nodes after the epidemic has reached a significant fraction of the network. This work tackles the multiple source detection problem by using graph neural network model to classify nodes as being the source of the epidemic. The input to the model (node attributes) are novel epidemic information in the k-hop neighborhoods of the nodes. The proposed framework is trained and evaluated under different network models and real networks and different scenarios, and results indicate different trade-offs. In a direct comparison with prior works, the proposed framework outperformed them in all scenarios available for comparison.

This work has received financial support through research grants from CNPq and FAPERJ (Brazil).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Accessible on: https://github.com/rodrigohaddad/multiple-source-detector-gnn.

References

  1. Barabási, A.L., Pósfai, M.: Network Science. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  2. David, E., Jon, K.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  3. Dong, M., Zheng, B., Quoc Viet Hung, N., Su, H., Li, G.: Multiple rumor source detection with graph convolutional networks. In: ACM International Conference on Information and Knowledge Management (CIKM), pp. 569–578 (2019)

    Google Scholar 

  4. Draief, M., Massouli, L.: Epidemics and Rumours in Complex Networks. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  5. Feizi, S., Médard, M., Quon, G., Kellis, M., Duffy, K.: Network infusion to infer information sources in networks. IEEE Trans. Netw. Sci. Eng. 6(3), 402–417 (2019)

    Article  MathSciNet  Google Scholar 

  6. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  7. Firth, J., Hellewell, J., Klepac, P., Kissler, S., Kucharski, A., Spurgin, L.: Using a real-world network to model localized covid-19 control strategies. Nat. Med. 26, 1616–1622 (2020)

    Article  Google Scholar 

  8. Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959)

    Article  MATH  Google Scholar 

  9. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: NeurIPS, p. 1025–1035 (2017)

    Google Scholar 

  10. Jiang, J., Wen, S., Yu, S., Xiang, Y., Zhou, W.: K-center: an approach on the multi-source identification of information diffusion. IEEE Trans. Inf. Forensics Secur. 10(12), 2616–2626 (2015)

    Article  Google Scholar 

  11. Jiang, J., Wen, S., Yu, S., Xiang, Y., Zhou, W.: Identifying propagation sources in networks: state-of-the-art and comparative studies. IEEE Commun. Surv. Tutor. 19(1), 465–481 (2017)

    Article  Google Scholar 

  12. Kermack, W.O., McKendrick, A.G., Walker, G.T.: A contribution to the mathematical theory of epidemics. Roy. Soc. Lond. 115(772), 700–721 (1927)

    MATH  Google Scholar 

  13. Leskovec, J., Mcauley, J.: Learning to discover social circles in ego networks. In: NIPS (2012)

    Google Scholar 

  14. Newman, M.E.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  15. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)

    Article  MathSciNet  Google Scholar 

  16. Paszke, A., Gross, S., Chintala, S.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS, pp. 8024–8035 (2019)

    Google Scholar 

  17. Prakash, B.A., Vreeken, J., Faloutsos, C.: Spotting culprits in epidemics: how many and which ones? In: IEEE International Conference on Data Mining (2012)

    Google Scholar 

  18. Shah, D., Zaman, T.: Rumors in a network: who’s the culprit? IEEE Trans. Inf. Theory 57(8), 5163–5181 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shah, D., Zaman, T.: Rumor centrality: a universal source detector. In: ACM SIGMETRICS Performance Evaluation Review, vol. 40, pp. 199–210 (2012)

    Google Scholar 

  20. Shelke, S., Attar, V.: Source detection of rumor in social network-a review. Online Soc. Netw. Media 9, 30–42 (2019)

    Article  Google Scholar 

  21. Wang, Z., Wang, C., Pei, J., Ye, X.: Multiple source detection without knowing the underlying propagation model. In: AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  22. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  23. Yu, P.D., Tan, C.W., Fu, H.L.: Epidemic source detection in contact tracing networks: epidemic centrality in graphs and message-passing algorithms. IEEE J. Sel. Topics Signal Process. 16(2), 234–249 (2022)

    Article  Google Scholar 

  24. Zang, W., Zhang, P., Zhou, C., Guo, L.: Locating multiple sources in social networks under the sir model: a divide-and-conquer approach. J. Comput. Sci. 10, 278–287 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Gonçalves Haddad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haddad, R.G., Figueiredo, D.R. (2023). Detecting Multiple Epidemic Sources in Network Epidemics Using Graph Neural Networks. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14197. Springer, Cham. https://doi.org/10.1007/978-3-031-45392-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45392-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45391-5

  • Online ISBN: 978-3-031-45392-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics