Skip to main content

A Tool for Measuring Energy Consumption in Data Stream Mining

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

Energy consumption reduction is an increasing trend in machine learning given its relevance in socio-ecological importance. Consequently, it is important to quantify how real-time learning algorithms tailored for data streams and edge computing behave in terms of accuracy, processing time, memory usage, and energy consumption. In this work, we bring forward a tool for measuring energy consumption in the Massive Online Analysis (MOA). First, we analyze the energy consumption rates obtained by our tool against a gold-standard hardware solution, thus showing the robustness of our approach. Next, we experimentally analyze classification algorithms under different validation protocols and concept drift and highlight how such classifiers behave under such conditions. Results show that our tools enable the identification of different classifiers’ energy consumption. In particular, it allows a better understanding of how energy consumption rates vary in drifting and non-drifting scenarios. Finally, given the insights obtained during experimentation on existing classifiers, we make our tool publicly available to the scientific community so that energy consumption is also accounted for in developing and comparing data stream mining algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Database mining: a performance perspective. IEEE Trans. Knowl. Data Eng. 5(6), 914–925 (1993)

    Article  Google Scholar 

  2. Barddal, J.P., Murilo Gomes, H., Enembreck, F., Pfahringer, B., Bifet, A.: On dynamic feature weighting for feature drifting data streams. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9852, pp. 129–144. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46227-1_9

    Chapter  Google Scholar 

  3. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448. SIAM (2007)

    Google Scholar 

  4. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249–260. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03915-7_22

    Chapter  Google Scholar 

  5. Bifet, A., Gavalda, R., Holmes, G., Pfahringer, B.: Machine Learning for Data Streams: With Practical Examples in MOA. MIT press, Cambridge (2023)

    Google Scholar 

  6. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach. Learn. Res. 11(52), 1601–1604 (2010). http://jmlr.org/papers/v11/bifet10a.html

  7. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: RAPL: memory power estimation and capping. In: Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design. pp. 189–194. ISLPED 2010, Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1840845.1840883

  8. Desrochers, S., Paradis, C., Weaver, V.M.: A validation of dram RAPL power measurements. In: Proceedings of the Second International Symposium on Memory Systems, pp. 455–470. MEMSYS 2016, Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2989081.2989088

  9. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80. KDD 2000, Association for Computing Machinery, New York, NY, USA (2000). https://doi.org/10.1145/347090.347107

  10. Gama, J.: Knowledge Discovery from Data Streams. Chapman & Hall/CRC, 1st edn. (2010)

    Google Scholar 

  11. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach. Learn. 90(3), 317–346 (2012). https://doi.org/10.1007/s10994-012-5320-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation (2014). https://doi.org/10.1145/2523813

  13. García-Martín, E., Bifet, A., Lavesson, N.: Energy modeling of Hoeffding tree ensembles. Intell. Data Anal. 25(1), 81–104 (2020)

    Google Scholar 

  14. García-Martín, E., Bifet, A., Lavesson, N.: Green accelerated hoeffding tree (2020). http://urn.kb.se/resolve?urn=urn:nbn:se:bth-19152

  15. Garcia-Martin, E., Lavesson, N., Grahn, H.: Energy efficiency analysis of the very fast decision tree algorithm. In: Trends in Social Network Analysis: Information Propagation, User Behavior Modeling, Forecasting, and Vulnerability Assessment, pp. 229–252 (2017)

    Google Scholar 

  16. Garcia-Martin, E., Lavesson, N., Grahn, H.: Identification of energy hotspots: a case study of the very fast decision tree. In: Au, M.H.A., Castiglione, A., Choo, K.-K.R., Palmieri, F., Li, K.-C. (eds.) GPC 2017. LNCS, vol. 10232, pp. 267–281. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57186-7_21

    Chapter  Google Scholar 

  17. García-Martín, E., Lavesson, N., Grahn, H., Casalicchio, E., Boeva, V.: How to measure energy consumption in machine learning algorithms. In: Alzate, C., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11329, pp. 243–255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13453-2_20

    Chapter  Google Scholar 

  18. García-Martín, E., Rodrigues, C.F., Riley, G., Grahn, H.: Estimation of energy consumption in machine learning. J. Parallel Distrib. Comput. 134, 75–88 (2019). https://doi.org/10.1016/j.jpdc.2019.07.007

    Article  Google Scholar 

  19. Gomes, H.M., et al.: Adaptive random forests for evolving data stream classification. Mach. Learn. 106(9), 1469–1495 (2017). https://doi.org/10.1007/s10994-017-5642-8, https://doi.org/10.1007/s10994-017-5642-8

  20. Gunasekara, N., Gomes, H.M., Pfahringer, B., Bifet, A.: Online hyperparameter optimization for streaming neural networks. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE (2022)

    Google Scholar 

  21. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for short code paths using RAPL. ACM SIGMETRICS Perform. Eval. Rev. 40(3), 13–17 (2012)

    Article  Google Scholar 

  22. Hoeffding, W.: Probability inequalities for sums of bounded random variables. In: Fisher, N.I., Sen, P.K. (eds.) The Collected Works of Wassily Hoeffding. Springer Series in Statistics. Springer, New York, NY (1994). https://doi.org/10.1007/978-1-4612-0865-5_26

  23. King, C.I.: Stress-ng. http://kernel.ubuntu.com/git/cking/stressng.git/. visited on 28/03/2018), p. 39 (2017)

  24. Klawonn, F., Angelov, P.: Evolving extended Naive Bayes classifiers. In: Sixth IEEE International Conference on Data Mining-Workshops (ICDMW 2006), pp. 643–647. IEEE (2006)

    Google Scholar 

  25. Montiel, J.: River: machine learning for streaming data in python. J. Mach. Learn. Res. 22(1), 4945–4952 (2021)

    Google Scholar 

  26. Noureddine, A.: PowerJoular and Joularjx: multi-platform software power monitoring tools. In: 2022 18th International Conference on Intelligent Environments (IE), pp. 1–4. IEEE (2022)

    Google Scholar 

  27. Phung, J., Lee, Y.C., Zomaya, A.Y.: Modeling system-level power consumption profiles using RAPL. In: NCA 2018–2018 IEEE 17th International Symposium on Network Computing and Applications. Institute of Electrical and Electronics Engineers Inc. (2018). https://doi.org/10.1109/NCA.2018.8548281

  28. Shao, Y.S., Brooks, D.: Energy characterization and instruction-level energy model of intel’s Xeon Phi processor. In: International Symposium on Low Power Electronics and Design (ISLPED), pp. 389–394. IEEE (2013)

    Google Scholar 

  29. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 377–382 (2001)

    Google Scholar 

  30. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance data with PAPI-C. In: Müller, M., Resch, M., Schulz, A., Nagel, W. (eds.) Tools for High Performance Computing 2009. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11261-4_11

  31. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23, 69–101 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Paul Barddal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Onuki, E.K.T., Malucelli, A., Barddal, J.P. (2023). A Tool for Measuring Energy Consumption in Data Stream Mining. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14197. Springer, Cham. https://doi.org/10.1007/978-3-031-45392-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45392-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45391-5

  • Online ISBN: 978-3-031-45392-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics