Skip to main content

Exploring Artificial Intelligence Methods for the Automatic Measurement of a New Biomarker Aiming at Glaucoma Diagnosis

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14197))

Included in the following conference series:

  • 216 Accesses

Abstract

Using technologies capable of providing retina structure high-resolution images is one of the most widespread means of identifying structural changes that may indicate the onset or progression of visual impairment. Automated glaucoma detection using optical coherence tomography is still considered an area needing further research. Several manual analyzes are currently performed over the generated by imaging equipment. This work presents an approach to foster automatic glaucoma evaluation considering convolutional neural networks for semantic segmentation of retinal layers through optical coherence tomography images and image processing for measuring the cup region in the optic nerve head portion. We provide a quantitative evaluation comparing the results obtained by a specialist physician. The work’s main contribution consists of the first approach supporting the automation of a new biomarker for diagnosing glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To Table 1 and Table 2, was abbreviate some columns. Meaning of: T: Total images, Q1: Quantity of train images, and Q2: Quantity of test images.

References

  1. Andrade, J.C.F., Kanadani, F.N., Furlanetto, R.L., Lopes, F.S., Ritch, R., Prata, T.S.: Elucidation of the role of the lamina cribrosa in glaucoma using optical coherence tomography. Surv. Ophthalmol. 67(1), 197–216) (2022). https://doi.org/10.1016/j.survophthal.2021.01.015

  2. Azad, R., Asadi-Aghbolaghi, M., Fathy, M., Escalera, S.: Bi-directional ConvLSTM U-Net with Densley connected convolutions. In: Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019, pp. 406–415 (2019). https://doi.org/10.1109/ICCVW.2019.00052

  3. Beykin, G., Norcia, A.M., Srinivasan, V.J., Dubra, A., Goldberg, J.L.: Discovery and clinical translation of novel glaucoma biomarkers. Progress Retinal Eye Res. 80 (2021). https://doi.org/10.1016/j.preteyeres.2020.100875

  4. Fu, H., Xu, D., Lin, S., Wong, D.W., Liu, J.: Automatic optic disc detection in OCT slices via low-rank reconstruction. IEEE Trans. Biomed. Eng. 62(4), 1151–1158 (2015). https://doi.org/10.1109/TBME.2014.2375184

    Article  Google Scholar 

  5. Fu, Z., et al.: MPG-Net: multi-prediction guided network for segmentation of retinal layers in OCT images. In: European Signal Processing Conference, pp. 1299–1303, January 2021. https://doi.org/10.23919/Eusipco47968.2020.9287561

  6. GBD 2019 Blindness and Vision Impairment Collaborators: Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study [published correction appears in Lancet Glob Health. 2021 Apr; 9(4):e408]. Lancet Glob Health 9(2), e144–e160 (2021). https://doi.org/10.1016/S2214-109X(20)30489-7

  7. Gopinath, K., Rangrej, S.B., Sivaswamy, J.: A deep learning framework for segmentation of retinal layers from OCT images. In: Proceedings - 4th Asian Conference on Pattern Recognition, ACPR 2017, pp. 894–899 (2021). https://doi.org/10.1109/ACPR.2017.121

  8. Gu, Z., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019). https://doi.org/10.1109/TMI.2019.2903562

    Article  Google Scholar 

  9. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. CoRR (2019). https://doi.org/10.48550/arXiv.1902.09630

  10. Khalil, T., Akram, M.U., Raja, H., Jameel, A., Basit, I.: Detection of glaucoma using cup to disc ratio from spectral domain optical coherence tomography images. IEEE Access 6, 4560–4576 (2018). https://doi.org/10.1109/ACCESS.2018.2791427

    Article  Google Scholar 

  11. Khalil, T., Akram, M.U., Raja, H., Jameel, A., Basit, I.: Detection of glaucoma using cup to disc ratio from spectral domain optical coherence tomography images. IEEE Access 6, 4560–4576 (2018). https://doi.org/10.1109/ACCESS.2018.2791427

  12. Li, J., et al.: Multi-scale GCN-assisted two-stage network for joint segmentation of retinal layers and disc in peripapillary OCT images. Biomed. Opt. Express 12, 2204–2220 (2021)

    Google Scholar 

  13. Phadikar, P., Saxena, S., Ruia, S., Lai, T.Y.Y., Meyer, C.H., Eliott, D.: The potential of spectral domain optical coherence tomography imaging based retinal biomarkers. Int. J. Retina Vitreous 3(1), 1–10 (2017). https://doi.org/10.1186/s40942-016-0054-7

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. IEEE Access 1, 16591–16603 (2015). https://doi.org/10.1109/ACCESS.2021.3053408

    Article  Google Scholar 

  15. Roy, A.G., et al.: ReLaynet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Express 8, 3627–3642 (2017). https://doi.org/10.1364/boe.8.003627

  16. Sander, B., Larsen, M., Thrane, L., Hougaard, J.L., Jørgensen, T.M.: Enhanced optical coherence tomography imaging by multiple scan averaging. Br. J. Ophthalmol. 89(2), 207–212 (2005). https://doi.org/10.1136/bjo.2004.045989

    Article  Google Scholar 

  17. Schmidt-Erfurth, U., Sadeghipour, A., Gerendas, B.S., Waldstein, S.M., Bogunović, H.: Artificial intelligence in retina. Prog. Retin. Eye Res. 67, 1–29 (2018). https://doi.org/10.1016/j.preteyeres.2018.07.004

    Article  Google Scholar 

  18. Sedai, S., et al.: Uncertainty guided semi-supervised segmentation of retinal layers in OCT images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 282–290. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_32

    Chapter  Google Scholar 

  19. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  20. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging (2015). https://doi.org/10.1186/s12880-015-0068-x

    Article  Google Scholar 

  21. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings (2016)

    Google Scholar 

  22. Zang, P., Wang, J., Hormel, T.T., Liu, L., Huang, D., Jia, Y.: Automated segmentation of peripapillary retinal boundaries in OCT combining a convolutional neural network and a multi-weights graph search. Biomed. Opt. Express 10(8), 4340 (2019). https://doi.org/10.1364/boe.10.004340

    Article  Google Scholar 

  23. Zhuang, J.: LadderNet: multi-path networks based on U-Net for medical image segmentation, pp. 2–5 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel C. Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernandes, G.C., Lavinsky, F., Rigo, S.J., Bohn, H.C. (2023). Exploring Artificial Intelligence Methods for the Automatic Measurement of a New Biomarker Aiming at Glaucoma Diagnosis. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14197. Springer, Cham. https://doi.org/10.1007/978-3-031-45392-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45392-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45391-5

  • Online ISBN: 978-3-031-45392-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics