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Abstract. This work delves into the application of artificial neural network
(ANN) models and recurrent neural networks (RNN), for time-series forecast-
ing in the dynamic realm of digital marketing. Focused on a travel company’s
real-time updated Return on Investment (ROI) data from Google Ads campaigns,
the research evaluates the efficacy of prediction intervals (PIs) in capturing fore-
cast uncertainties. The study’s contribution lies in the exploration of PIs in ANN
models for digital marketing ROI data, providing valuable insights for decision-
makers navigating rapidly changing scenarios. The work emphasizes the signif-
icance of incorporating intervals in ANN models for robust decision-making in
business and digital marketing applications.

1. Introduction
As noted by [Järvinen and Karjaluoto 2015], consumers now interact with companies
primarily through digital channels, such as e-commerce websites and social media. Con-
sequently, it is recommended that organizations utilize web analytics tools to measure
the return of their digital marketing campaigns. Some popular digital marketing tools are
Google Ads and Meta Ads, which allows companies to create targeted marketing cam-
paigns. The measurement of the return on digital marketing can take various forms, both
financial and non-financial (e.g. increased website traffic). Statistical metrics, commonly
referred to as Key Performance Indicators (KPIs), are often used for this purpose, with
the Return on Investment (ROI) being a widely recognized and utilized metric to measure
financial return.

However, predicting these metrics can be challenging, particularly when dealing
with non-linear data. This work examines the application of neural network (ANN) and
recurrent neural network (RNN) models for time-series forecasting on frequently updated
digital marketing ROI data of a travel company. The focus is on exploring parametrical
methods for building prediction intervals (PIs), aiming to answer: “How does the use
of PIs help us to deal with the uncertainty that is present in the dynamic nature of real-
time forecasts of digital marketing performance metrics?”, as PIs provide a more realistic
representation of uncertainty in the forecasts compared to traditional confidence intervals,
as noted by [Carney et al. 1999]. To demonstrate the efficacy of these models, a RNN
model is fitted to a complex, frequently updated ROI time-series and two different types
of prediction intervals are employed.

The rest of the paper is structured as follows: in Section 2, the paper provides
a comprehensive literature review. Section 3 details the methodology employed in this



study, including data collection procedures, pre-processing steps, and the implementation
of models for time-series forecasting. Section 4 presents the results of the experiments.
In Section 5, the findings are discussed. Finally, Section 6 concludes the paper by sum-
marizing key insights and highlighting limitations.

2. Literature Review
[Wong et al. 1997] conducted a review on the applications of neural networks in various

business fields, including finance, where a large number of studies have been published
on the use of neural networks for stock market forecasting. In the marketing field, [Wong
et al. 1997] found 10 papers between 1995 and 1998, with two of them addressing the use
of neural networks for predicting airline passenger numbers. A review by [Abiodun et al.
2018] showed that out of the 12 papers focused in the applications of ANNs in marketing,
published from 2009 to 2018, 5 focused on the use of neural networks for prediction tasks.

Neural networks have also been utilized in predicting real-time data. [Mei et al.
2019] used Long Short Term Memory (LSTM) Recurrent Neural Networks to predict
mobile bandwidth data in real-time, by training LSTM models on temporal patterns from
data in different mobile networking scenarios. [Guo et al. 2016] also tackled real-time
learning and prediction, proposing an adaptive gradient learning method for RNNs that
aimed to make time-series forecasting robust to outliers and change points.

[Armstrong 2001] reported in the literature that neural networks are better than
traditional forecasting models for long-term forecasting horizons, but this is not the case
for shorter horizons. While neural networks (NNs) provide point-estimate forecasts, they
do not offer prediction intervals. According to [Zhu and Laptev 2017], uncertainty esti-
mation has been widely studied for classical forecasting models, but not for ANN models.
However, with the advancements in computational power and the growing popularity of
neural networks, [Kasiviswanathan and Sudheer 2016] emphasized that the uncertainty in
ANN models is a significant issue that cannot be ignored.

[Quan et al. 2014] explored the challenge of dealing with uncertainty in electrical
load forecasting using ANN models, acknowledging that ANN-based prediction intervals
have some issues such as implementation difficulties, assumptions about the data distri-
bution, and high computational demands. [Nourani et al. 2021] noted that the use of
prediction intervals for quantifying uncertainty has grown in recent years for purposes of
planning and risk management. However, without understanding the sources of uncer-
tainty, the assessment of ANN modeling quality is impossible, which negatively impacts
decision making. This work contributes to literature by investigating the use of PIs asso-
ciated with ANN modeling in the field of digital marketing, which enhances the model’s
quality and also proposes a web app to evaluate the model’s forecasts, advocating for the
usage of PIs as best-case and worst-case scenarios in order to tackle the issue of support-
ing real-time decision making for marketing campaigns of a travelling agency.

3. Methodology
3.1. Data Analysis
In this work, real-time updated financial data regarding Google Ads marketing campaigns
for a Brazilian travel agency was made available by a Brazilian digital marketing com-
pany. To preserve their identity, fictional names,“VoaL” and “Otis”, were used for the



travel agency and the digital marketing company, respectively. The data analysis was
performed using the statistical software, R.

The digital marketing company, Otis, provided two data sources with information
about the travel agency. The first data source was a sheet with daily investment data
on Google Ads advertisement campaigns, while the second was a daily updated dataset
with revenue data from all marketing channels, including Google Ads, which was used
to calculate the daily ROI time series from Google Ads campaigns. The information
available in the data and the chosen model’s predictions were made available for end
users through an web application built with R-shiny, a framework that builds web apps
with R.

To assess the prediction model, [Hyndman and Athanasopoulos 2021] suggested
dividing the dataset into training and validation data, with the test data usually correspond-
ing to 20% of the total and being at least as large as the desired forecasting horizon. In this
work, the division between training and validation data followed the approach suggested
by [Siami-Namini et al. 2018], with 70% of the data being used for training and fitting
the models and 30% being used for validation. ARIMA, LSTM, and RNN models were
fitted and compared in different time windows of 3 days (short horizon), 7 days (medium
horizon) and 14 days (long horizon) to verify the capacity of generalization of the models
when dealing with unseen data.

3.2. Return On Investment - ROI

The metric Return On Investment (ROI) is widely used to evaluate the efficiency of in-
vestments or to make comparisons between different investments, in digital marketing,
the ROI is used to verify if the marketing channel (or campaign) is returning value to the
company. It can be considered a KPI as it is crucial to determine if an investment is yield-
ing a financial return. Although there are various methods to compute ROI, this work was
inspired by the approach proposed by [Botchkarev and Andru 2011]. In this formulation,
the ROI at each day t, ROIt is equivalent to equation 1.

ROIt =
Revenuet − Investmentt

Investmentt
(1)

A ROI of 100% suggests that the revenue generated from the investment was equal
to its cost, with no additional return. However, in the proposed formulation, a ROI of
100% implies that the invested money was not only returned, but the profit was equal to
the investment. The ROI was calculated by using daily investment data from Google Ads
campaigns (e.g. the daily cost of all running marketing campaigns), and daily revenue
data from all transactions that were mainly impacted by the Google Ads channel.

3.3. Neural Network Models

Neural Network models are inspired by the architecture of the brain and can be utilized to
model complex non-linear relationships between the response and predictor variables. In
the context of time series forecasting, these models consist of three layers: an input layer,
a hidden layer, and an output layer. Each layer, except for the output layer, can contain
multiple neurons. It is also possible to incorporate multiple hidden layers in a Neural
Network model.



For an ANN (Artificial Neural Network) with three layers, [Brezak et al. 2012]
defines the input of the jth neuron of the hidden layer of the nth learning sample as
netj(n) =

∑I
i=1 vj,ixi(n), j = 1, ..., J − 1, (the bias is always one) where I is the

quantity of neurons in the input layer, v are the weights (selected by learning algorithm
that minimizes the cost function) and x are the network inputs. In the hidden layer the
input is then modified to generate an output following a non-linear activation function,
which can be a bipolar sigmoid, given by,

yj(n) =
2

1 + e−cjnetj(n)
− 1, j = 1, ..., J − 1 (2)

cj is a gain parameter which generally is 0, 1 used to make the neural network robust
against outliers, bias’ output value is always yj = 1.

The last mth output value of the ANN is obtained by summing all the values given
by the neurons in the hidden layer (including bias) and the weights w which are generated
in the output, the sum is then given by the following equation:

Om(n) =
J∑

j=1

yj(n)wmj,m = 1, ...,M (3)

The parameters v, w and c are estimated during the learning process.

3.4. LSTM and Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are an extension of ANNs, the main characteristic
of an RNN is the dynamic neuron model with a recurrent structure, this type of neural
network was developed because in general ANNs have less memory and cannot deal with
temporal dependencies, fundamentally the RNN considers past information to generate
an output. [Zeroual et al. 2019] summarizes the architecture of recurrent neural networks,
where the neuron A of the neural network receives the input entry xt and outputs a hidden
state information ht:

ht = g(Wxt + Uht−1) (4)

W is a weight matrix, ht−1 the hidden state of the previous time step and U is a matrix
known as transition matrix, which is similar to a markov chain and g is a sigmoid function.

However, problems of vanishing gradient that limit the efficiency of simple re-
current neural networks, led to the development of Long Short-Term Memory (LSTM)
recurrent neural networks. According to [Zeroual et al. 2019], they are more efficient
in handling temporal dependencies. LSTM neural networks can also be implemented in
R [Wanjohi 2018], these NNs consists of memory blocks called cells connected by layers.
Information in the cells is contained in the cell state and hidden states, regulated through
mechanisms known as gates, using sigmoid and hyperbolic tangent activation functions.
The three main gates controlling the flow of information are called the forget gate, input
gate, and output gate.



The gates are formed by sigmoid functions, where It is the input gate, Ft is the
forget gate, and Ot is the output gate. Čt and Ct represent the intermediate cell state
and the cell state (the next memory input), respectively. Additionally, each sigmoid layer
outputs a number between 0 and 1, representing the amount of data to be passed to each
cell. 0 means that the information should not be passed, and 1 means it should be fully
passed on.

The equations for each gate can be defined as follows:

It = σ(XtWxi +Ht−1Whi + bi)

Ft = σ(XtWxf +Ht−1Whf + bf )

Ot = σ(XtWxo +Ht−1Who + bo)

W refers to the weight parameters, and b is the bias parameter.

The forget gate (Ft) determines the type of information that will be deleted from
the cell state. The input gate (It) chooses which new data should be kept in the cell, where
a sigmoid layer called the ”input gate layer” first selects the values to be modified. Later,
the hyperbolic tangent layer creates a vector of candidate values that can be added to the
cell state. The output gate defines what should come out of each cell. The output value is
based on the cell state along with the filtered and added data.

The intermediate cell state Čt, the cell state Ct, and the hidden state Ht are defined
as:

Čt = tanh(XtWxc +Ht−1Whc + bc)

Ct = Ft × Ct−1 × Čt

Ht = Ot × tanh(Ct)

3.5. ARIMA
The ARIMA model (Autoregressive Integrated Moving Average model), used in this
work, is one of the most widely used methods for time series forecasting. The
auto.arima function in the statistical software R already includes a stationarity test for
estimating the differencing parameter and can be directly used for this purpose, [Moret-
tin and Toloi 2004] and [Hyndman and Athanasopoulos 2021] employ two different ap-
proaches to explain the model, one being more theoretical and the other computational.

The ARIMA model is a combination of three models: an autoregressive AR(p)
where p corresponds to the order of the autoregressive part (the autoregression term indi-
cates that there is a regression of a variable on itself), an integrated I(d) of order d, where
d is the degree of differencing. Differencing is used to transform a non-stationary series
into a stationary one and can help stabilize the mean of a time series by eliminating or re-
ducing trend and seasonality. The moving average model corresponds to MA(q), where
q is the order of the moving average part. The equation of the full model is illustrated
below:

y
′

t = c+ ϕ1y
′

t−1 + · · ·+ ϕpy
′

t−p + θ1εt−1 + · · ·+ θqεt−q + εt (5)



3.6. Error Metrics

The error measures used in the work are the Root Mean Squared Error (RMSE), the
Mean Absolute Error (MAE), and the Symmetric Mean Absolute Percentage Error
(sMAPE). For model selection, those with the lowest RMSE (Equation (6)) and MAE
(Equation (7)) are chosen. Minimizing MAE leads to median predictions, while mini-
mizing RMSE leads to mean predictions. The MAE measure is easier to interpret; how-
ever, RMSE is more commonly used.

RMSE =

√∑N
i=1(xi − x̂i)2

n
, i = 1, ..., N (6)

MAE =

∑N
i=1 |xi − x̂i|

n
, i = 1, ..., N (7)

sMAPE (Equation (8)) is an alternative measure to the Mean Absolute Percentage
Error (MAPE):

sMAPE =
N∑
t=1

200
|xi − x̂i| /(xt − x̂t)

n
, t = 1, ..., N (8)

The sMAPE has some considerations; if xt is close to zero, x̂t is likely to be
close to zero as well, making the calculation unstable. Another point is that the sMAPE
value can be negative, hence not being an absolute percentage measure. Due to these
complications, this measure was evaluated together with RMSE and MAE.

3.7. Time Series Non-Parametrical Testing

In time series forecasting, many statistical models assume stationarity. Therefore, it is
necessary to check if the series has well-defined trend and seasonality components, other-
wise statistical models such as ARIMA won’t have a good performance and it’s necessary
to rely in models that are capable to deal with non linearity in the data. For assessing the
trend component, the Mann-Kendall test can be used. The null hypothesis of this test
assumes the absence of trend in the series. The test statistic can be defined as the sum of
the ranks of the differences between sequential values xi and xj with i < j. According

to [Burn and Elnur 2002], the statistic is defined as S =
n−1∑
i=1

n∑
j=i−1

sgn(xj − xi), where

sgn(θ)

+1 , θ > 0
0 , θ = 0
−1 , θ < 0

.

The Kwiatkowski-Phillips-Schmidt-Shin test (KPSS) is a non-parametric test with
the null hypothesis of stationarity. According to [Nielsen 2005], the test statistic can be
calculated assuming no trend in the form of Yt = ξt + et, where et is stationary and
ξt = ξt−1 + vt is a random walk with vt ∼ IID(0, σ2

v). If the variance is 0, then ∀t
ξt = ξ0, and Yt is stationary. A simple regression Yt = µ̂ + êt is used to estimate the
stochastic component, with the test statistic in Equation (9):



KPSS =
1

T 2

∑T
t=1 S

2
t

σ̂2
∞

(9)

where S2
t =

∑t
s=1 ês is a partial sum of the residuals, and σ̂2

∞ is an estimator of
the variance of ês.

To verify the seasonal component, the Kruskall-Wallis test can be conducted. As
defined in [Morettin and Toloi 2004], each column of a table can be considered a sample
from the population, consisting of k samples of size nj , where Yij is the i-th observation
of sample j, i.e., j = 1, 2, ..., k and i = 1, 2, ..., nj with N =

∑k
j=1 nj . Observations

Yij should be replaced by their ranks Rij , obtained by ordering all N observations, with
R.j =

∑nj

i=1Rij . The test statistic can be calculated as:

T1 =
12

N(N + 1)

k∑
j=1

R2
.j

nj

− 3(N + 1) (10)

The null hypothesis of no seasonality is rejected if T1 ≥ T1c (where T1c is the
critical value of the statistic T1) based on a significance level α.

In addition to analyzing the series behavior, since the goal is to make predictions
of future observations, the Shannon spectral entropy can be calculated, which is a mea-
sure of how ”easy” the series is to predict. According to [Hyndman and Athanasopoulos
2021], a series with high seasonality and trend (well-behaved) will have entropy close to
0, while a series with a lot of noise, hence difficult to predict, will have entropy close to
1. According to [Goerg 2013], Shannon’s spectral entropy is defined as in Equation (11),
and the density is normalized so that

∫ π

−π
fx(λ) dλ = 1. The entropy was calculated using

the feasts package in R.

H(fx) = −
∫ π

−π

fx(λ) log fx(λ) dλ (11)

3.8. Prediction Intervals

Prediction intervals are a very useful way to represent the uncertainty present in forecasts.
A 95% prediction interval contains the values that should include the actual future value
with a probability of 95%. According to [Hyndman and Athanasopoulos 2021], consid-
ering the assumption that the distribution of future observations follows a normal distri-
bution, a 95% prediction interval for the forecast h can be described as in Equation (12),
where c depends on the coverage probability of the interval, being a α/2 quantile of the
normal distribution.

[ŷT + h|T − cσ̂h, ŷT + h|T + cσ̂h] (12)

The standard deviation of the distribution of forecasts can be estimated as in Equa-
tion (13), where K is the number of estimated parameters in the forecasting method, and
M represents the number of missing observations in the residuals yt − ŷt = et.



σ̂ =

√
1

T −K −M

T∑
t = 1e2t (13)

[Hyndman and Athanasopoulos 2021] also propose benchmark methods for cal-
culating σ̂h, of which two were selected for this work. The naı̈ve benchmark method
where σ̂h = σ̂

√
h and the mean method with σ̂h = σ̂

√
1 + 1/T . This is done for com-

parison, respectively, between an interval where the amplitude of the upper and lower
limits increases over the forecast horizon (with naı̈ve being the simplest of those pre-
sented by the authors) and another that keeps the amplitude constant on the average of the
series.

4. Results
The RNN model was optimized to be included in the web application built with r-shiny,
since data was frequently updated it was necessary to input new training data in the model,
while maintaining the aspect ratio of 70% for training and 30% for validation, where the
RNN took 3.59 seconds to process the training function compared to 64.61 seconds for
the LSTM model and 0.31 seconds for the ARIMA model, since the RNN and the LSTM
model had the lowest error measures in the validation and test sets, the most efficient
model was chosen to be the RNN (Table 1), where the MAE means that on average, its
predictions are off by approximately 1.03 units from the actual ROI values, The SMAPE
of 0.43 suggests that, on average, its predictions have an average error of approximately
43% and the RMSE suggests that on average the predictions in validation set are off by
approximately 1.31 units from the actual values.

The LSTM neural network had the best error metrics with lower MAE (on average
the model’s predictions are off by approximately 0.83 units) and RMSE (predictions off
by 1.05 units) than the two compared models (Table 1) and a SMAPE of 38%. The
ARIMA model had the worst error metrics, with a SMAPE of 57%, which is 14% higher
than the recurrent neural network model and 19% higher than the LSTM.

Table 1. Error Measures in Validation Set.

Models MAE SMAPE RMSE
ARIMA 1,59 0,57 1,82
RNN 1,03 0,43 1,31
LSTM 0,83 0,38 1,05

In addition to the test set, the predictions for different time periods in Table 2 show
that the model with the best forecasts for a long time period (14 days) was the recurrent
neural network, with an average percentage error of 27% (SMAPE) and the predictions
are deviating by 0.68 units from the real ROI values considering MAE and 0.84 units
considering RMSE. Furthermore, for all time periods, in the RNN, both RMSE and MAE
were below 1 for the model, which is a good indicator. If predictions were off by 1 on
average, it would mean that the model’s forecasts would significantly deviate from the real
ROI values in most cases; however, the ARIMA model showed slightly better metrics for
the 7-day period. The performance of the LSTM model was only slightly better than the
RNN model for the 7-day period in terms of MAE and RMSE metrics.



Table 2. Error Measures in Test Sets.

Forecasting Window 3 Days 7 Days 14 Days
Models MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE RMSE
ARIMA 1.11 0.43 1.14 0.54 0.21 0.68 0.72 0.28 0.85
RNN 0.82 0.32 0.93 0.58 0.23 0.71 0.68 0.27 0.84
LSTM 1.04 0.40 1.08 0.57 0.21 0.84 0.79 0.32 1.11

Prediction intervals were also calculated for the RNN model to quantify the un-
certainty of the predictions. With a coverage probability of 95%, the benchmark methods
used were the Naı̈ve and Mean methods, and the number of parameters used to estimate
the standard deviation of the predictions were 3, which was equal to the number of pa-
rameters estimated by the RNN model. The main difference between the Naı̈ve prediction
interval (Figure 1) and the Mean interval (Figure 2) is that the former increases with the
forecast horizon while the latter remains constant with the mean.

Figure 1. RNN 95% Prediction Interval with Naı̈ve Benchmark Method

Figure 2. RNN 95% Prediction Interval with Mean Benchmark Method

The mean benchmark method was selected to estimate σ̂h and calculate the predic-
tion intervals for the real-time forecasts in the web application. The mean benchmark was
preferred over the naı̈ve method due to its advantages in visualization and well-defined
upper and lower bounds. Additionally, the mean benchmark provided more credible in-
tervals for the 14-day prediction window, as compared to the wider prediction intervals
produced by the naı̈ve method.

The results shown in this section were obtained in a specific time frame, however,
given the real time nature of the data it’s important to periodically check if the model is



still making reliable forecasts, so since the model receives new data as training input, a
section called Error Metrics was developed in the web app (Figure 3), where basically
the error metrics of the last 14 days (since that was the chosen forecast horizon) are used
to continuously evaluate the model’s forecasting quality, when one of the error metrics
starts to grow continuously the model needs to be reviewed. Considering the SMAPE for
instance, in (Figure 3), the model is predicting the next two weeks with an average error
of 21%, if this error grows, the model’s architecture should be reviewed.

Figure 3. Last 14 Days Error Metric Report in Web App.

5. Discussion
Since the ROI time series has a daily frequency, the decomposition of its components
followed the recommendation of [Hyndman and Athanasopoulos 2021]. The work states
that if the data is observed more than once a week, there may be more than one seasonal
pattern, and daily data usually exhibits weekly seasonality. Therefore, for additive decom-
position, an initial frequency of 7 was used. The additive decomposition of the series in
Figure 4 shows that, despite the absence of a trend, the seasonal component was present
in the time series.

Figure 4. Additive Decomposition of Time Series

In addition to graphical evidence of seasonality, the Kruskall-Wallis test provided
evidence to reject the null hypothesis of non-seasonality at a 5% significance level (p-
value < 0.0001). However, the Mann-Kendall test provided evidence to reject the null
hypothesis of a lack of trend in the series (p-value < 0.0001), contradicting the additive
decomposition analysis, which means that even though there is graphical evidence to state
that there is no trend in the data, there is no statistical evidence to back this statement.

Furthermore, the Kwiatkowski-Phillips-Schmidt-Shin test (or KPSS test) revealed
that at a significance level of 5%, the null hypothesis of stationarity could be rejected (p-
value = 0.0239). The Shannon spectral entropy was 0.85, i.e., very close to 1, considered



a high value, highlighting the difficulty of forecasting the time series. Additionally, the
Keenan non-linearity test revealed that the series exhibits non-linear behavior (p-value <
0.0001). Therefore, a model from the ARIMA class would not be sufficient. Since the se-
ries is challenging to predict, non-stationary, and demonstrates a non-linear relationship,
taking neural network models in consideration for ROI forecasting is a must, these find-
ings were crucial in considering the two neural network models, both of which resulted
in accurate ROI predictions.

The selection of the simple RNN model for the real-time forecasts in the web
application (Figure 5) was based on its good performance compared to the ARIMA and
its lower computational intensity compared to the LSTM. The RNN model showed a 94%
decrease in the processing time of the training function, and its prediction intervals were
updated with new data. The approach of presenting results through an web application
and adjusted models used in this work was similar to that of [Ristow et al. 2021], but the
authors used an ARIMA model and did not specify if their predictions were updated.

Figure 5. Real Time Updated 14 days prediction for ROI In Web App.

This study adopted a parametric method to estimate the standard deviation and
calculate prediction intervals, which required the estimation of the parameters of a prob-
ability distribution. However, even though assuming the normality of the probability dis-
tribution for future predictions may help to capture uncertainty in data, it can be a strong
assumption, as noted in [Quan et al. 2014]. They presented a nonparametric method, the
LUBE (Lower Upper Bound Estimation) method, which utilized an ANN model with two
outputs for the upper and lower bounds. While this method has been shown to be more
robust compared to traditional methods, it requires training two models, one for point
forecasts and another for PIs, which can be computationally intensive.

[de Sousa et al. 2020] trained a model to present point forecasts and used the
LUBE method to construct PIs, but this approach may not be feasible in this study due to
the computational demand. To reduce the computational demand and stay within RAM
usage in the cloud server limits, this study chose to work with a parametric method and
train only the point forecast model, which reduces training time, since the model needs to
train every time the web app is opened. As for the assumptions of a probability distribu-
tion, [Hyndman and Athanasopoulos 2021] do not specify the use of a normal distribution,
and statistical tests or empirical knowledge can be used to estimate prediction intervals
and select a distribution.

The importance of prediction intervals in forecasting for enhancing decision mak-
ing is also a topic in [Goodwin et al. 2010], however the authors conducted the study in



a laboratory, rather than a commercial environment, since fast decisions are usually com-
mon in business, bringing forecasts with a dynamic nature, whilst dynamically training
the model and making prediction intervals available for the end user was achieved in this
work by proposing the use of a web application (a friendly User Interface). A reduced ver-
sion (hiding sensitive information of the companies) of the web app in a frozen timeframe
is also available and can be checked in [de Araujo Morais 2024].

Among the forecasting models for ROI, the LSTM model yielded the best results
in terms of error metrics compared to the test set, outperforming the ARIMA model. This
outcome aligns with the findings of studies where neural networks are also superior than
ARIMA [Siami-Namini et al. 2018] [Lou et al. 2022]. The importance of deep learning
methods for complex time series forecasting was also verified in this study in predict-
ing ROI, as both the simple recurrent neural network and the LSTM had smaller errors
than the ARIMA model for the test set. Additionally, the ARIMA model extrapolated
predictions to the mean in the test set.

6. Conclusion
In the field of business and marketing, the application and discussion of prediction inter-
vals in artificial neural network (ANN) models is limited. Previous studies in this area,
such as [Abiodun et al. 2018] and [Wong et al. 1997], have not specifically addressed
the use of prediction intervals. However [Nourani et al. 2021] explored this subject. This
paper makes a unique contribution by providing a comprehensive examination of the most
efficient method for measuring uncertainty in frequently updated digital marketing ROI
data, which enables decision makers to rapid plan their actions in crisis like cenarios,
optimizing social media campaigns or in setting more realistic goals to be achieved.

After a careful evaluation of available methods, the mean benchmark prediction
interval was selected as the most appropriate for the current study. This decision was
based on the computational efficiency of the method and the better defined prediction
intervals it provided for the 14-day forecast horizon. The inclusion of prediction intervals
in the analysis of ROI data is critical for informed decision-making, as the lower and upper
bounds of the interval can provide a worst-case and best-case scenario, respectively.

One of the limitations of this study is the lack of computational power available in
the cloud service hosting the web application, even though the study tackles the problem
of dealing with the dynamic nature of the real-time data, since the structure of the time
series may change over time, it can be necessary to review the architecture of the RNN
model in case the error metrics get worse and the model stops reflecting reality. Fur-
thermore, computational power was also a constraint, as the lack of computational power
prevented the implementation of the LUBE method for forecasting the ROI and fitting a
model for point predictions.

For future research in the business field utilizing web applications with more re-
sources available, it is recommended to employ the LUBE method to estimate prediction
intervals, if not possible the parametric prediction intervals are less computationally in-
tensive, easier to implement and can capture some uncertainty in the predictions. In con-
clusion, this study highlights the importance of incorporating prediction intervals in ANN
models for business and digital marketing applications on data collected through social
media and websites, providing valuable insights for future research in this area.
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