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Abstract. In developing countries, electricity theft is a common type of non-
technical losses (NTL, i.e., losses associated with electricity that is consumed
but not billed by some type of anomaly), financially affecting not only distribu-
tion system operators (DSO) but also customers. Similarly to frauds in other
contexts, there is evidence that electricity theft is highly influenced by social in-
teractions. Here we propose a multiplex and heterogeneous network model to
evaluate how social and professional interactions influence on electricity theft.
Particularly, by employing a variation of the random walk with restart algo-
rithm we were able to derive a new exposure score for discriminating between
fraudsters and regular customers.

1. Introduction
Electricity theft is a major issue that mostly affects developing countries where result-
ing losses can range up to 40% of the distributed electricity [Glauner et al. 2016]. More
specifically, electricity theft belongs to the class of non-technical losses (NTLs), which are
related to the energy delivered to customers but not properly billed. NTLs could be due to
any issue in the meter-to-cash process, also encompassing faulty meters and equipment.

The most evident effect of NTLs is financially harming distribution system
operators (DSOs) by loss of revenue, which is often passed to regular customers
through tariffs. For instance, in Brazil, according to its national power sector regula-
tor (ANEEL), in 2016 NTLs accounted for 6.72% of all electrical energy injected into
the distribution grids, generating a loss of R$ 4.5 billion (approximately US$ 1.2 bil-
lion)1. In addition to the financial effects, NTLs can also impact stability and reliabil-
ity of electrical power grids, leading to electrical supply problems such as black-outs
[Glauner et al. 2016, Messinis and Hatziargyriou 2018].

Tackling electricity theft is a challenge for DSOs due to difficulties in accurately
detecting and characterizing irregular customers. DSOs usually deploy inspection cam-
paigns to identify such users and minimize losses, even though those campaigns can be
costly and not always effective. Moreover, the effectiveness of an inspection campaign is
directly related to the selection of customers that must be inspected, which is a difficult
task even for experts [Ramos et al. 2018].

In the last ten years, DSOs have been steadily investing in developing novel meth-
ods for NTL detection aiming to improve the identification and profiling of irregular users,

1Compiled by the authors with information obtained from http://www.aneel.gov.br



therefore minimizing costs related to ineffective inspections. Considering NTL detection
methods recently reported in the literature, there is a trend of using supervised machine
learning techniques to automatically recognize customers involved in electricity theft or
any other kind of fraud [Messinis and Hatziargyriou 2018, Ramos et al. 2018].

Those machine learning-based prediction methods mostly rely on customers con-
sumption information, almost neglecting the evidence that electricity theft is a social
phenomena, which can be characterized by factors such as place of residence, level of
education and income, among others. Moreover, according to Glauner and coworkers
[Glauner et al. 2016], the perpetration of electricity theft can be influenced by the be-
havior of neighboring customers, since neighbors are likely to share their knowledge of
electricity theft as well as the outcome of inspections. Therefore, properly characteriz-
ing those neighborhood interactions could help improving the accuracy of NTL detection
models, especially electricity theft. This assumption can be extended for another types
of interactions, such as family relationships or professional interactions among DSO’s
workers and customers.

Based on this premise, in this article we propose a multiplex and heterogeneous
network model to evaluate how social (neighborhood and family) and professional inter-
actions among DSO’s workers and customers influence on electricity theft. Particularly,
we employ a variation of the random walk with restart algorithm [Valdeolivas et al. 2019]
to measure how the effect of electricity theft propagates through the network. Our aim
is to derive network-based features that can be used in the development of models for
detecting NTLs, more specifically electricity theft.

This article is organized as follows: Section 2 presents an overview of the litera-
ture, addressing the main techniques used in the detection of non-technical losses. Section
3 describes the datasets used in this work and explain how the exposure score can be ob-
tained, based on the application of the random walk with restart algorithm on a multiplex
and heterogeneous network. Section 4 presents the experiments performed and its respec-
tive results. Finally, Section 5 presents conclusions and discussions of future works.

2. Related work
NTL detection methods can be broadly classified into three main categories
[Messinis and Hatziargyriou 2018]: data oriented, grid oriented and hybrids. Data ori-
ented methods make use of customer-centric data (for example energy consumption), em-
ploying data mining or machine learning techniques to learn patterns from sample data.
On the other hand, grid oriented methods rely on data obtained from distribution grid
sensors taking advantage of the physical rules that govern the underlying electrical net-
work. Finally, hybrid methods combine algorithms and techniques belonging to the two
aforementioned classes.

For the last ten years, most of the research on NTL detection have been fo-
cusing on data oriented solutions employing supervised machine learning methods,
such as Support Vector Machines (SVM) [Coma-Puig et al. 2016, Jindal et al. 2016,
Nagi et al. 2010, Nagi et al. 2011], statistical models [Faria et al. 2016], artificial
neural networks (ANNs) [Coma-Puig et al. 2016, Costa et al. 2013] and decision
trees [Costa et al. 2013, León et al. 2011]. Other methods included rule induction
[Leon et al. 2011, Nagi et al. 2011], Bayesian classifiers [Monedero et al. 2012] and Op-



timum Path Forests (OPF) [Ramos et al. 2011].

Usually, data oriented methods depend on large samples characterizing distinct
NTL profiles in order to derive predictive models that are effective enough in different
electricity theft scenarios. NTL profile characterization is commonly performed in terms
of features related to historical consumption data using summary statistics such as mean,
max/min, standard deviation [Glauner et al. 2017] or employing mathematical transfor-
mations (Fourier, Wavelet and cosine) or even adjusting a statistical model as time series
or polynomial regression.

Although the main source of information used by NTL detection models is based
on consumption data [Glauner et al. 2017, Messinis and Hatziargyriou 2018], adding fea-
tures that capture other aspects related to the electricity theft phenomena can signifi-
cantly improve NTL detection models. Such features can convey insights about cus-
tomer behavior (or current state) that are knowingly related to electricity theft, thus
helping to discriminate between regular and fraudulent customers. In that sense, some
recent works have been proposing the use of features related to socioeconomic level
[Coma-Puig et al. 2016, Faria et al. 2016], climate conditions [Coma-Puig et al. 2016,
Jindal et al. 2016] and geographical location [Faria et al. 2016]. Also, credit worthiness
rating [Nagi et al. 2010, Nagi et al. 2008b, Nagi et al. 2008a], which reflects the propen-
sity of a customer to repeatedly delay or avoid payments of electricity bills, and history of
query of debits [Costa et al. 2013] are examples of features describing financial aspects
of electricity theft.

Electricity theft can be viewed as a fraudulent event influenced by the customer’s
social interactions. For instance, when a fraudster does not receive any kind of financial
or legal penalties, related customers, either by family ties, neighborhood or some other
type social interaction, would be aware of the situation, thus being susceptible to follow
a similar behavior. Moreover, in a broader context, fraudsters tend to transfer knowledge
on how to commit fraud without being caught [Van Vlasselaer et al. 2017]. Would be
expected, therefore, that a proper characterization of customers’ social interactions might
help to improve the detection of electricity theft cases.

Recently, the use of social network analysis techniques has been successfully em-
ployed in fraud detection problems [Baesens et al. 2015]. In such approaches, frauds
are characterized as a social phenomena, in which group of fraudsters collaborate and
share knowledge with close allies. So by using social network analysis techniques, it
is possible to make inferences about how fraudsters are organized [Baesens et al. 2015,
Van Vlasselaer et al. 2017]. Next, we present and discuss works that use social network
analysis in the fraud detection context.

Van Vlasselaer and collaborators [Van Vlasselaer et al. 2017] studied the impact
of network information for social security fraud detection. They created a bipartite graph
connecting companies to their past and present resources. In this case, resources include
address, equipment, buyers, suppliers, employees, etc. By exploring the neighborhood of
known fraudulent companies, they propagated fraudulent behavior through the network
and inferred a fraud exposure score, which was used for the derivation of a set of network-
based features. Intrinsic features, describing the current characteristics of a company,
and network-based features were used to develop a novel fraud detection model, which



showed promising results.

In [Akoglu et al. 2013], the authors employ social network analysis tech-
niques that exploits the network effects and automatically detect fraudulent users
and fake reviews in online review networks. Finally, Van Vlasselaer and coworkers
[Van Vlasselaer et al. 2015a] developed a novel approach to detect fraudulent credit card
transactions conducted in online stores. The authors derived a time-dependent suspicious-
ness score by exploiting a network of credit card holders and merchants. The combina-
tion of intrinsic features (extracted from the characteristics of incoming transactions and
the customer spending history) and network-based features (based on the suspiciousness
score) led to performance gains in terms of accuracy.

So far, to the best of our knowledge, we have not found in the electric sector
context, approaches that employ network structures to analyze the relationship of inter-
dependence among individuals (customers and DSO’s workers), evaluating how different
kinds of social interaction would influence electricity theft.

3. Material and methods

3.1. Datasets

The data used in this study were supplied by a Brazilian DSO. More precisely, five
datasets comprising information about more than 300,000 customers (active and non-
active as well) belonging to a selected city were provided for the period ranging from
January 2014 to September 2018. The five datasets are the following:

Customers
Customer information, including location (latitude/longitude), customer class,
contract status (active/nonactive), connection voltage and type of meter.

Kinship
Family relations between DSO’s customers: father, mother, brother, sister, uncle,
aunt, cousin, spouse, mother-in-law and offspring. Up to 10 relatives per customer
are listed.

Energy consumption
Customers’ billed energy per month. It contains more than 15 million meter read-
ings.

Inspections
Historical data regarding inspections conducted by the DSO in order to detect
NTLs. Each record contains the target customer, the inspection date and the re-
spective result. More than 70,000 customers were inspected at least once during
the considered period.

Services
Historical data on services performed by the DSO (new connection requests, re-
pairs, disconnections, etc.). For each service record, it contains the type of service,
the DSO’s workers involved, the date of execution and the consumer unit2. During
the considered period, almost 900,000 services were performed by a staff of 640
workers.

2Residence or store that consumes electricity from the distribution system.



In Brazil, following ANEEL regulations, the electric power consumer units are
classified into two groups: A and B. Group A (high voltage) comprises users that receive
energy in voltage equal to or greater than 2.3 kilovolts (kV) while group B (low voltage)
is characterized by consumer units serviced at a voltage lower than 2.3 kV. In this last
group are present residential, commercial or small size industrial consumers. Due to the
levels of relationships being considered in this article, only group B consumers are part
of the study.

3.2. Electricity theft influence propagation

Firstly, based on the datasets described in Section 3.1, we defined two classes of nodes
(customers and DSO’s workers) and their respective intra- and inter-class interactions. As
proposed in [Valdeolivas et al. 2019], we modeled those interactions as a multiplex and
heterogeneous network.

A multiplex network is a collection of two or more networks sharing the same
set of nodes, but with edges representing different types of connections. In this work,
we have a multiplex network representing family and neighborhood interactions between
customers. For the neighborhood network, two given customers are defined as neighbors
if the Haversine distance3 between their respective consumer units is less than 50 meters.
The Ball Tree algorithm [Omohundro 1989] was used to detect neighbors based on the
geographical coordinates from the Customers dataset.

On the other hand, a heterogeneous network is the composition of two networks,
each one having different types of nodes and edges, which are linked through a bipartite
graph. Here, interactions between customer and DSO’s workers is defined according the
services performed in consumer units (Services dataset). A customer x and worker y are
linked if there was any kind of service performed by y in any consumer unit owned by x.

Finally, workers that performed any kind of service in a given consumer unit are
also linked, shaping a DSO’s workers’ team network. The multiplex and heterogeneous
network can be schematically displayed as presented in Figure 1.

Following the multiplex and heterogeneous network notation used in
[Valdeolivas et al. 2019], let n the number of customer nodes, it follows that the n×n ad-
jacency matrix for each customer layer is defined as A[α] = (a

[α]
i,j )i,j=1,··· ,n, with α = 1 de-

noting the family network and α = 2 denoting the neighborhood network, where a[α]i,j = 1
if the customer node i is connected with node j on layer α, and 0 otherwise. As con-
sidered in [Valdeolivas et al. 2019], auto-interactions are not considered, meaning that
a
[α]
i,i = 0 ∀ i = 1, · · · , n.

Also, let m the number of DSO’s workers and Aw = (a
[w]
i,j )i,j=1,··· ,m the adjacency

matrix for the workers’ team network, where a[w]i,j = 1 if the worker node i is connected
with node j, and 0 otherwise. Interactions between customers and workers can be repre-
sented through the bipartite adjacency matrixBn×m whereBi,j = 1 if the customer node i
is connected with worker node j, and 0 otherwise. As noted by [Valdeolivas et al. 2019],
in order to build an heterogeneous with multiplex layers graph, nodes from every layer
from the multiplex graph need to be linked with their respective nodes from the worker’s

3Great-circle distance between two points on a sphere given their longitudes and latitudes.



Figure 1. Multiplex and heterogeneous network representing interactions among
customers and DSO’s workers. Solid line represents the possibility of a
customer node jumping to another layer, that is, jumping from the neigh-
borhood network to the family network, and vice versa. Dotted line rep-
resents the edges within each layer (neighbors, family, teams’ workers).
Finally, dotted-dashed line represents the bipartite connections among
DSO’s workers and customers.

team network, according to the bipartite association. To do so, two identical bipartite
graphs Bn×m have to be defined.

Then, the multiplex and heterogeneous adjacency matrix can be defined as

A =

(1− δ)A[1] δIn B
δIn (1− δ)A[2] B
BT BT Aw

 (1)

where δ ∈ [0, 1] quantifies the probability of a customer node staying in a layer or jumping
to another layer and In denotes the n× n identity matrix.

Given the matrix M obtained from column normalization of A, we want to prop-
agate the effect of a limited number of fraudsters (customers that who have committed
energy theft) through the network. By doing that, our aim is to derive an exposure score,
that can be used as a metric for the propensity of a customer to commit energy theft. In
order to derive the exposure score, we employed a variation of the random walk with
restart (RWR) as proposed in [Valdeolivas et al. 2019].

In the RWR, at each interaction, a particle traveling through the heterogeneous
network can also restart by jumping to a random node with a restart probability r ∈ [0, 1].
Considering the matrix M , by iteratively solving the RWR equation

pTt+1 = (1− r)MpTt + rpT0 (2)

we can derive the exposure score for each node of the heterogeneous network. More
precisely, when the difference between vectors pt+1 and p0 is negligible, the stationary
probability is reached and the values of those vectors can be seen as a metric of importance
for each node composing the network.



If we restrict the restart of the traveling particle to a limited number of specific
nodes, we will restrict the exploration of the network to the neighborhood of those nodes,
also known as seeds. By doing so, the solution of the RWR equation will represent a
proximity measure between the seeds and all other nodes in the network. In this case, the
vector pt+1 will store the fraud exposure score for both customers and DSO’s workers.
Since the vector p0 is the initial probability distribution, its entries will be nonzero only
for the nodes representing the seeds. Particularly, the seeds will be represented by nodes
related to customers known to have committed energy theft.

4. Experiments
Here we describe the performance evaluation of the proposed exposure score in terms of
discriminating fraudsters from regular customers.

For each year in the period 2014-2017, we divided the target city into a 50 × 50
grid. Then, we computed the electricity theft propensity for each grid cell i, j, which is
given by the proportion of identified fraudsters among inspected customers belonging to
cell i, j. For a given year, only customers belonging to the top 20 regions regarding elec-
tricity theft propensity and their respective interactions were used for building a multiplex
and heterogeneous network as described in Section 3.2. Seed nodes were defined based
on inspections results of the first eight months of the year. Customers that were inspected
within the remaining four months were then used to define the test set.

The exposure score was validated by their Enrichment Factors (EF) and by Re-
ceiver Operating Characteristic (ROC) curve analysis over the test set. Enrichment Fac-
tors measure the quality of the exposure score, indicating how many more fraudsters we
find within an “early recognition fraction” of the list of inspections relative to a random
distribution. Enrichment factors are calculated as follows:

EFx% =
Fraudstersx%/Nx%

Fraudsters/N
(3)

where Fraudstersx% is the number of identified fraudsters in the top x% of the rank-
ordered inspection list, Fraudsters is the total number of identified fraudsters, Nx% is
the number of performed inspections in the x% of the inspection list, and N is the total
number of inspections.

The ROC curve analysis is a well-recognized method used as an objective way
of evaluating the ability of a given metric to discriminate between two distinct popula-
tions [Triballeau et al. 2005]. The ROC curve is represented by plotting the fraction of
true positives (true positive rate, TPR) versus the fraction of false positives (false positive
rate, FPR). The area under the curve (AUC) is a practical way of evaluating the metric’s
performance. If the AUC is close to 0.5 (random), the metric can be considered poor. The
greater the AUC, the more effective the exposure score is in discriminating regular cus-
tomers from fraudsters. Table 1 summarizes the inspection data for each each considered
test set.

4.1. Preliminary results

In Table 2, we present the results for the test experiments. Figure 2 depicts the ROC curve
analysis for each test set. More precisely, the ROC curve applied to the retrospective



Table 1. Summarized inspection data for each test set. For each considered year,
the test set encompasses customers that were inspected in the last four
months.

Year #Customers #Inspected customers #Identified fraudsters

2014 10,913 782 332
2015 10,055 595 302
2016 11,376 850 453
2017 11,710 1,052 434

analysis of the exposure score is a plot of the true positive rates (TPR, y-axis) versus false
positive rates (FPR, x-axis) for all for all ranked customers belonging to an inspection
list. Each point of the ROC curve represents a unique TPR/FPR pair corresponding to a
particular fraction of the inspection list.

Results from the ROC curve analysis (see AUC in Table 2 and ROC curves in Fig-
ure 2) suggest that the proposed exposure score is a good discriminator between fraudsters
and regular customers. Results of different years were quite similar, indicating that the
fraud patterns for the considered regions (top 20 regions regarding energy theft propen-
sity) had little change over time.

Comparing our proposed approach with other NTL methods is challenging be-
cause they are trained in different data sets, many of them proprietary. For that reason,
we focused on evaluating if our exposure score is useful for customer prioritization con-
sidering inspections lists, which are mostly based on experts’ knowledge on electricity
theft. Since EFs are more reliable towards the early recognition problem, our preliminary
results (Table 2) indicate that the proposed exposure score could be helpful in prioritizing
fraudsters over regular customers in inspections lists defined by DSO’s experts.

Table 2. Obtained results for each test set using δ = 0.5 and r = 0.75. Enrichment
factors (EF) were calculated for 1%, 5% and 10%.

Year 2014 2015 2016 2017

EF
1% 1.81 1.70 1.77 2.30
5% 2.17 1.85 1.81 2.35
10% 2.17 1.89 1.83 2.35

AUC 0.865 0.845 0.847 0.853

5. Conclusions

In this work, we used a multiplex and heterogeneous network model to evaluate how
social (neighborhood and family) and professional interactions among DSO’s workers
and customers influence on electricity theft. By employing a variation of the random
walk with restart, we were able to derive a new exposure score for discriminating between
fraudsters and regular customers. Our results indicate that our exposure score can be used
for customer prioritization in inspections campaigns.



Figure 2. ROC curves analysis for each experimental setup. Sensitivity = TPR;
FPR = 1 – Specificity.

As a future development, our intention is to also consider regions that are less
susceptible to energy theft in order to improve the discriminating power of our exposure
score. In addition, we plan to evaluate our proposed fraud score along with other com-
monly used features for NTL detection, such as consumption data.

Finally, since fraud schemes are highly adaptive and evolve over time
[Van Vlasselaer et al. 2015b], we are also planning to develop a new time-weighted net-
work model that are able to characterize fraudsters according to the recency of their frauds
and social interactions.
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