
Supporting the efficient exploration of large-scale social
networks for recommendation

A. Corbellini, C. Mateos, D. Godoy, A. Zunino, S. Schiaffino ∗

1ISISTAN Research Institute, CONICET-UNCPBA
Campus Universitario, Tandil (B7001BBO), Buenos Aires, Argentina

{acorbellini}@isistan.unicen.edu.ar

Abstract. Most recommendation algorithms in the context of large-scale social
networks struggle with the need of an efficient exploration of the underlying user
graph. Current solutions in the form of graph-specific databases or frameworks
for graph algorithms do not scale well for processing complex navigational pat-
terns. In this paper we present an approach for supporting social recommen-
dation algorithms that operate with large graphs in a computer cluster based
on “policies”, rules that allow users to throttle the amount of parallelism and
control task location.

1. Introduction
Social Recommender Systems (SRSs) aim to alleviate information overload over social
media users by presenting the most attractive and relevant content, often using person-
alization techniques [5]. In the context of social networks, recommendation algorithms
require the exploration of the underlying user graph in order to find information that is
later summarized, ranked and presented to users in the form of suggestions (e.g., suitable
friends to contact with, interesting posts to read, etc.).

For large-scale social networks such as Twitter or Facebook, the analysis of so-
cial relationships poses some challenges. In response, some developments in the form
of graph-specific databases or frameworks for processing graph algorithms have arisen.
However, these graph-oriented supports do not by themselves scale or perform efficiently
in the presence of graph algorithms with complex navigation patterns, such as those for
link prediction [9, 2].

The programmer is then responsible for adding logic to their algorithms in order to
increase performance according to certain policies, e.g., taking advantage of data layout.
In this paper we describe an approach for boosting the performance of these kind of
large-scale graph algorithms via two policies, namely Balanced policy, which focuses on
balancing computational load across nodes in the network infrastructure, and Location
Aware policy, which exploits data locality and focuses on reducing network consumption.

Experimental evaluation of the proposed approach for supporting social recom-
mendation was performed using a followee recommendation algorithm for Twitter that
suggests other people a user might be interested in following [2]. In a first stage this
algorithm explores the followee/follower network near the target user (i.e., the user re-
ceiving the suggestions) to select a set of candidate or potential users to recommend. We

∗This work has been partially funded by ANPCyT, through project PICT-2011-0366, and CONICET, under grant PIP No. 114-
200901-00381.



addressed the problem of supporting such search of candidates, independently of the later
process of generating the actual recommendations.

The rest of this paper is organized as follows. Section 2 overviews the followee
recommendation algorithm we used to test our approach. Section 3 describes the proposed
approach. Section 4 summarizes the experiments carried out with the complete Twitter
graph as of July 2009 [8]. Section 5 discusses related works and, finally, conclusions are
stated in Section 6.

2. Followee Recommendation Algorithm
The algorithm used in this paper for evaluating the supporting infrastructure for exploring
large social graphs is a followee recommender algorithm for Twitter users [2]. This algo-
rithm is based on the characterization of Twitter users made in several studies such as [6],
according to which users are mainly divided in two categories: information sources and
information seekers. Users behaving as information sources tend to collect a large amount
of followers as they are actually posting useful information or news, whereas information
seekers follow several users to get information but rarely post a tweet themselves.

The hypothesis behind the algorithm is that the target user is an information
seeker that has already identified some interesting users acting as information sources
(i.e., his/her followees). Other people who also follow some of the users in this group
share some interests with the target user and might have discovered other relevant infor-
mation sources in the same topics (i.e., their followees). This last group are the candidates
the algorithm needs to evaluate in the second phase.

The search of candidate users is performed according to the following steps:

Step 1. Starting with the target user uT (an information seeker), obtain the list of users
he/she follows (information sources). Let us call this list S = {s1, s2, . . . , sn}.

Step 2. For each element in S get its followers (information seekers), let us call the union
of all these lists L, i.e., L =

⋃
∀s∈followees(uT )

followers (s).

Step 3. For each element in L obtain its followees (information sources). Let us call the
union of all these lists T , i.e., T =

⋃
∀l∈L

followees (l).

Step 4. Exclude from T those users that the target user is already following, resulting in
a list of candidates R.

3. Middleware Support
In this section we present insights of the underlying structures used to isolate the algorithm
from the networking details, such as message passing and code mobility. These structures
effectively work as a thin middleware layer.

3.1. Ad-Hoc Distributed Key-Value Database
We used a distributed key-value database to store the adjacency list of each user in the
Twitter graph. Although there are many open source databases that provide a key-value
API [3, 11], we decided to create an ad-hoc distributed database for test purposes. The
database client component exposes a simple get/put API, allowing an application to make
queries to the database servers. The server component stores keys along with their corre-
sponding values and responds to queries made by clients. To communicate clients with



servers we use JGroups1, a network communication toolkit implemented in Java which
follows P2P principles.

To find the corresponding server for a given key, every client applies a hashing
function based on the number of available servers. The result of the hashing function is
used as an index to access the server list and obtain a server. Then, the key-value pair is
sent to the server to be stored in.

One of the requirements for the database is to persist the data after a shutdown.
To achieve this, we implemented a storage layer on every server instance. The simplest
way to provide storage support is by using an embedded data store. Among the existing
data store alternatives, we chose LevelDB2, a fast and lightweight embedded key-value
store, to persist the data on every node. The main reason for choosing LevelDB is its
sequential read performance. As the recommendation algorithm under study accesses
keys sequentially most of the time, this type of storage is very convenient.

3.2. Parallel Processing Support
The original recommendation algorithm [2] was adapted to execute on top of GridGain, a
Java-based parallel processing middleware. To achieve this, we identified parallelization
opportunities in the algorithm and used them to create its GridGain version.

The implemented parallel algorithm consists of three types of tasks: TS , TL and
TT . Each task type corresponds to a different step in the algorithm:

• Tasks of type TS: this type of task obtains the followees of the target user (step 1).
• Tasks of type TL: this type of task obtains the list of followers of the users obtained

by TS (step 2).
• Tasks of type TT : this type of task receives a list of followers from TS and queries

the followees of each users. Using this information, tasks build the list of recom-
mended users along with the frequency of appearances of each user in the final
stage (steps 3 and 4).

The algorithm works as follows. At startup time, it creates a task T 1
S of type TS using the

target user as an argument. T 1
S uses the given user to create a job J1

S of type JS . This job
obtains the list of followees of the user, and passes on the list to a new task T 1

L of type TL.
T 1
L divides the list of followees and creates jobs of type JL. Each job J i

L, wherei = 1..NL,
obtains the list of followers of each input user and creates a new task T i

T . In turn, each
task of type TT , receive a list of followers, divides this list and distributes a number of
jobs of type JT . These jobs collect the followees of each input user, count the number of
appearances into a table, and return it to their parent task. Tasks merge the tables received
by their children jobs into a final result. Finally, T 1

S returns a table of users ranked by their
number of appearances.

There are a number of alternatives to perform the division and mapping of jobs to
computational nodes. In this work, we propose two:

• Balanced policy: this policy divides the amount of work by the number of avail-
able nodes, creating one job per node. Then it maps each job to a balanced node,
i.e., a node that is relatively less occupied than the other nodes. To obtain a bal-
anced node we use Grid Gain load balancing functionality.

1JGroups Web Page, http://www.jgroups.org/
2LevelDB Web Page on Google Code, https://code.google.com/p/leveldb/



• Location Aware policy: This policy takes advantage of the locality of the keys.
It creates jobs by dividing the input into different lists of keys grouped by their
physical location.

The main difference between policies is that Balanced policy focuses on a fair usage
of computational nodes, whereas Location Aware policy focuses on a efficient usage of
network resources.

4. Experiments

The experiments were carried out using a Twitter dataset3 consisting of approximately
1400 million relationships between 40 million users [8]. This dataset only contains topo-
logical information about the social network, i.e., it only shows binary relationships be-
tween user IDs.

For selecting a test user group, we first filtered the list of users using the informa-
tion source ratio [1], denoting to what extent the user can be considered an information
source, defined as follows:

IS =
followers(u)

followers(u) + followees(u)

We required that this ratio was lesser or equal than 0.5, which means that the num-
ber of followees had to be equal or larger than its number of followers. This restriction
arises as a natural way of selecting which users would have any interest in receiving rec-
ommendations. After the initial filtering, we kept the top-5 users ordered by number of
followees.

For each user, we ran the algorithm five times using the Balanced policy and five
times using a Location Aware policy. For every run we collected the bytes sent over the
network and the total recommendation time. Using this information we calculated the
average number of bytes sent over the network and the average recommendation time.

Figure 1 summarizes the results obtained for a recommendation for the top-5 users
(IDs) ordered by number of followees: 14389132, 14669398, 15991049, 16559157 y
17850012. As it can be observed from the table, the Location Aware policy gives a sub-
stantial improvement over the Balanced policy. With respect to the recommendation time,
i.e., the time it takes to compute the R for a user, the Location Aware policy outperforms
the Balanced approach by approximately 10 minutes. With respect to network consump-
tion, the Location Aware policy generates approximately 6 times less traffic than the Bal-
anced approach. graphically shows this comparison.

5. Related Work

Several alternatives can be found in the literature addressing the problem of storing and
mining large-scale social data. For instance, Pregel [10] and Trinity [13] are closed-source
graph processing frameworks created by Google and Microsoft, respectively. There are
also a number of open-source projects for large-scale graph processing. As an example,

3http://an.kaist.ac.kr/traces/WWW2010.html



0

20000

40000

60000

80000

100000

120000

14389132 14669398 15991049 16559157 17850012

T
ra

ffi
cw

(M
B

)

Users

Balanced
LocationwAware

(a)

0

20

40

60

80

100

14389132 14669398 15991049 16559157 17850012

T
im

eA
(M

in
ut

es
)

Users

Balanced
LocationAAware

(b)

Figure 1. Comparison between Location Aware and Balanced policies w.r.t. Network Traffic and
Recommendation Time.

HipG [7] is a graph processing framework that allows to model hierarchical parallel algo-
rithms but focuses on the programming model for processing graphs rather than the way
graph data is stored.

Previous studies have taken a similar approach to distribute a friendship recom-
mendation algorithm. In [14], the authors use MapReduce to run topic analysis on mi-
croblogs obtained from a large Twitter dataset. The WTF algorithm [4] is used by Twitter
to provide user recommendations. To achieve that, the algorithm maintains a “circle of
trust”, which contains the most relevant users in each user’s network, and then obtains its
followees.

6. Conclusions
In this paper, we presented an approach for supporting the efficient exploration of large-
scale social networks required for social recommendation algorithms exhibiting complex
graph navigation patterns. For testing this approach we used a MapReduce version of
an existing recommendation algorithm for the Twitter social network and proposed two
possible distribution policies: Location Aware Policy and a Balanced Policy.

In our experiments, the Location Aware Policy provides an improvement of ap-
proximately 15% on the time for recommendation over the Balanced Policy and 6 times
less network usage. However, the Balanced Policy may be well suited for clusters were
jobs of different applications must share the same set of nodes.

Future work includes a) the improvement of the underlying graph storage, b) the
implementation of new policies and c) the testing of this approach with other graph-based
recommendation algorithms. With respect to a), instead of a key-value NoSQL database,
we will consider NoSQL databases designed for storing large graphs [12]. With regard to
b), we are enhancing the Location Aware Policy with heuristics for selectively and smartly
exploiting locality (e.g., depending on the size of the keys involved). Finally, with respect
to c), we are currently working with link prediction algorithms such as SALSA [9].

References
[1] M. Armentano, D. Godoy, and A. Amandi. Towards a followee recommender system for

information seeking users in Twitter. In Proceedings of the International Workshop



on Semantic Adaptive Social Web (SASWeb’11), Girona, Spain, 2011.

[2] M. Armentano, D. Godoy, and A. Amandi. Topology-based recommendation of users in
micro-blogging communities. Journal of Computer Science and Technology. Special
Issue on Data Mining on Social Networks and Social Web, 27(3):624–634, 2012.

[3] R. Cattell. Scalable SQL and NoSQL data stores. ACM SIGMOD Record, 39(4):12–27,
2011.

[4] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh. WTF: The who to fol-
low service at Twitter. In Proceedings of the 22th International World Wide Web
Conference (WWW 2013), Rio de Janeiro, Brazil, 2013.

[5] I. Guy and D. Carmel. Social recommender systems. In Proceedings of the 20th Inter-
national Conference Companion on World Wide Web (WWW ’11), pages 283–284,
Hyderabad, India, 2011.

[6] A. Java, X. Song, T. Finin, and B. Tseng. Why we Twitter: Understanding microblogging
usage and communities. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007
Workshop on Web Mining and Social Network Analysis, pages 56–65, San Jose, CA,
USA, 2007.

[7] E. Krepska, T. Kielmann, W. Fokkink, and H. Bal. HipG: Parallel processing of large-
scale graphs. ACM SIGOPS Operating Systems Review, 45(2):3–13, 2011.

[8] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news
media? In Proceedings of the 19th International Conference on World Wide Web
(WWW’10), pages 591–600, Raleigh, NC, USA, 2010.

[9] R. Lempel and S. Moran. SALSA: The stochastic approach for link-structure analysis.
ACM Transactions on Information Systems (TOIS), 19(2):131–160, 2001.

[10] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski. Pregel: A system for large-scale graph processing. In Proceedings of the
2010 International Conference on Management of Data (SIGMOD ’10), pages 135–
146, Indianapolis, IN, USA, 2010.

[11] R. P.Padhy, M. R. Patra, and S.C. Satapathy. RDBMS to NoSQL: Reviewing some next-
generation non-relational databases. International Journal of Advanced Engineering
Science and Technologies, 11(1):15–30, 2011.

[12] S. Sakr, A. Liu, D.M. Batista, and M. Alomari. A survey of large scale data manage-
ment approaches in cloud environments. Communications Surveys Tutorials, IEEE,
13(3):311–336, 2011.

[13] B. Shao, H. Wang, and Y. Li. The Trinity Graph Engine. Technical Report MSR-TR-
2012-30, Microsoft Research, March 2012.

[14] C. Zhang and J. Sun. Large scale microblog mining using distributed MB-LDA. In
Proceedings of the 21st International Conference Companion on World Wide Web
(WWW ’12 Companion), pages 1035–1042, Lyon, France, 2012.


