
277

BreSci - 10º Brazilian e-Science Workshop

Integrating Scientific Workflows with Scientific Gateways: A

Bioinformatics Experiment in the Brazilian National

High-Performance Computing Network

Maria Luiza Mondelli1, Marcelo Monteiro Galheigo1, Vı́vian Medeiros1,

Bruno F. Bastos1, Antônio Tadeu Azevedo Gomes1,

Marta Mattoso2, Ana Tereza R. Vasconcelos1, Luiz M. R. Gadelha Jr.1

1Laboratório Nacional de Computação Cientı́fica (LNCC)

Petrópolis – RJ – Brazil

2Programa de Engenharia de Sistemas e Computação (PESC/COPPE)

Universidade Federal do Rio de Janeiro (UFRJ)

Rio de Janeiro – RJ – Brazil

{mluiza,galheigo,vivian,bfbastos,atagomes,atrv,lgadelha}@lncc.br

marta@cos.ufrj.br

Abstract. Bioinformatics experiments are rapidly and constantly evolving due

improvements in sequencing technologies. These experiments usually demand

high performance computation and produce huge quantities of data. They also

require different programs to be executed in a certain order, allowing the ex-

periments to be modeled as workflows. However, users do not always have the

infrastructure needed to perform these experiments. Our contribution is the in-

tegration of scientific workflow management systems and grid-enabled scientific

gateways, providing the user with a transparent way to run these workflows in

geographically distributed computing resources. The availability of the work-

flow through the gateway allows for a better usability of these experiments.

1. Introduction

Biology is generating data sets that are increasingly large due, for instance, to high-

throughput sequencing technologies. Various computational tools can be composed to

perform complex analyses of these sequences in areas such as metagenomics, transcrip-

tomics and comparative genomics. To better manage these analyses, scientists can use sci-

entific workflow management systems [Liu et al. 2015] (SWfMS), which allow them for

easily composing and executing many-task computations through the automation of the

steps commonly involved: scheduling activity execution based on data dependencies; par-

allel execution of independent activities; synchronization of workflow execution; manag-

ing data transfer and activity execution in distributed computing environments. In addition

to these steps, it is also interesting to gather provenance information [Freire et al. 2008]

describing the history of composition and execution of computational processes, such as

scientific workflows. This allows, for instance, determining how data sets were derived

from other data sets and computational activities. They allow for the precise description

of how a computational process was planned, which is called prospective provenance,

and what occurred during execution, which is called retrospective provenance. Applica-

tions of provenance information include reproducibility and validation of computational

XXXVI Congresso da Sociedade Brasileira de Computação

278

scientific experiments, scientific workflow reuse, data quality evaluation and attribution

of scientific results.

Parallel and distributed computing is frequently used for scaling up the execu-

tion of computationally and data-intensive scientific workflows. These computations

often involve the collaboration of a large number of geographically distributed indi-

viduals and heterogeneous resources. Grid computing [Foster 2001] was proposed to

allow for managing users and computational resources in these distributed comput-

ing environments that often include multiple institutions. Finally, scientific gateways

[Wilkins-Diehr et al. 2008] consolidate this functionality to provide grid-enabled scien-

tific applications through web interfaces. In this work, we describe an experiment of im-

plementing a scientific gateway to provide pre-existing Bioinformatics workflows in the

Brazilian National High-Performance Computing Network (SINAPAD). It allows users

to execute these scientific workflows using computational resources geographically dis-

tributed through an easy-to-use web interface.

This work is organized as follows: in section 2, we describe how SciCumu-

lus and Swift were integrated to the grid middleware [Lima et al. 2005] and scien-

tific gateway toolkit [Gomes et al. 2015] of SINAPAD. In section 3, we evaluate this

integration by experimenting with two pre-exisiting scientific workflows, SwiftGecko

[Mondelli et al. 2015] for comparative genomics, and SciPhy [Ocana et al. 2011] for phy-

logenetics. In the same section we present a performance evaluation of SwiftGecko. In

section 4, we compare the integration to related efforts in this area. Finally, in section 5,

we describe future work and make some concluding remarks.

2. Integrating Scientific Workflows with Grid Middleware

SINAPAD uses the CSGrid [Lima et al. 2005] middleware to support the usage and man-

agement of distributed computational resources. It offers features to integrate resources

and applications as well as to manage data and users with a very rich and flexible authen-

tication and authorization scheme. Through the system, users have access to a workspace

in which they can find and execute all available applications as well as add new appli-

cations. On top of this infrastructure, CSGrid offers two key entry points for users: a

Java desktop client and a service bus based on CORBA (called OpenBus) through which

job (OpenDreams) and file (HDataService) management services are provided as secure

APIs. To facilitate the access to these CSGrid services through the Web, the mc2 toolset

[Gomes et al. 2015] has been developed for supporting the implementation of web-based

science gateways and Webservice/REST-based APIs.

For the integration of scientific workflows and CSGrid, two parallel SWfMSs were

used: Swift [Wilde et al. 2011] and SciCumulus [de Oliveira et al. 2010]. Swift supports

the specification, execution and analysis of scientific workflows through a high-level

scripting language with many characteristics commonly found in functional program-

ming. Swift has the capability to evaluate and execute in parallel the expressions whose

data dependencies are met. It also has support for gathering and querying for core prove-

nance information [Gadelha et al. 2012], related to datasets and computational activities

managed during the workflow execution, and additional information that scientists are

usually interested in querying, such as domain-specific annotations. The provenance is

stored and can be accessed through a relational database (SQLite3 or PostgreSQL).

279

BreSci - 10º Brazilian e-Science Workshop

Figure 1. Conceptual schema of the integration between scientific workflows and

CSGrid middleware

SciCumulus also allows scientific workflow modeling, execution and analysis. It

was first developed as a cloud middleware to explore parameter sweep and data fragmen-

tation parallelism in scientific workflow activities. Currently, SciCumulus supports the

parallel execution in both clusters and cloud enviroments. The activities and the data flow

between them are defined by the user through a file in XML format. SciCumulus uses

an algebraic approach, focused on data, to the execution of workflows. This approach

makes the provenance, which is stored using a relational database (PostgreSQL), a key

point both for the execution and for the analysis of the workflow.

In order to deploy workflows in SINAPAD, as depicted in Figure 1, we first in-

stalled and configured SciCumulus, Swift and the applications used by the workflows

on the computational resources managed by CSGrid. Through the CSGrid platform, we

created two algorithms for executing these two workflows. “Algorithm” is a term used

in CSGrid for describing a non-interactive application that can be dispatched directly by

CSGrid clients with a clearly-defined set of input and output parameters. A CSGrid algo-

rithm comprises an XML-based configuration file that defines these parameters and one

or more submission scripts that deal with the specifics of the involved applications. For

instance, in the case of the Swift we created scripts to configure the environment to allow

the SWfMS to be executed from a submitting node in the HPC clusters managed by CS-

Grid. For Scicumulus, because of execution peculiarities and common allocation policy

settings in HPC clusters available in SINAPAD, it was necessary to use a network proxy

to allow SciCumulus access to an external provenance database.

3. Evaluation

For the evaluation, we will present two workflows, SciPhy [Ocana et al. 2011] and Swift-

Gecko [Mondelli et al. 2015], that were deployed in SINAPAD.

In bioinformatics, phylogeny is an area that process biological sequences with the

XXXVI Congresso da Sociedade Brasileira de Computação

280

objective of obtaining phylogenetic trees and other statistical calculations that support in-

ferences about the evolutionary life and relationships of organisms of interest. Designing,

executing and analyzing phylogenetic (or phylogenomic) experiments is not an easy task

since they are complex and execute time/CPU-intensive applications. Then, they require

technologies such as SWfMSs and HPC environments. To support these scenarios, the

scientific workflow SciPhy for phylogenetic analyses was modeled using SciCumulus.

SciPhy consume amino acid or nucleotide datasets and generate phylogenetic trees. It

presents the following four main activities (Figure 2):

1. Multiple Sequence Alignment (MSA): To construct individual MSA. This activity

receives files in the multi-FASTA format as input and it produces an MSA as

output.

2. MSA Conversion: converts the output from the activity 1 to PHYLIP format.

3. Search for the best evolutionary model: It tests the PHYLIP files to find the best

evolutionary model.

4. Construction of phylogenetic trees: it receives the outputs from activities 2 and 3

and constructs phylogenetic trees.

Figure 2. Conceptual view of the workflow SciPhy

Comparative genomics is an example of another area of bioinformatics in which

experiments also aim to infer relationships between organisms. They are considered large-

scale bioinformatics workflows as they require HPC to process the huge amount of data,

known as biological big data. Addressing these data-intensive problems provides mea-

sures to perform, for instance, several analysis with the ultimate objective to better under-

stand the biology of the organisms. The GECKO [Torreno and Trelles 2015] application

is an example of workflow for genome comparisons designed to identify collections of

high-scoring segment pairs (HSPs). To take benefit from distribution and paralelism, this

application was implemented in Swift as the SwiftGecko1 workflow, which is composed

by three main computational modules, as presented in Figure 3 and described as follows:

1. Dictionary Calculation: Correspond to the creation of dictionaries for each se-

quence, composed by the activities 1-4 in blue boxes.

2. HSP Detection: Detection of the seed points or hits used to identify the HSP

locations. It is composed by the activities 5-9 in green boxes.

3. Post-processing Module: to attach complementary tasks such as for performing

statistical calculations or functional annotations, composed by the activity 10 in

orange box.

In Figure 4 we show the user web interface of the SwiftGecko algorithm, obtained

as a result of the integration. In this interface, the user must enter the required parameters

to execute the SwiftGecko workflow without the need to install any program related to the

workflow or the SWfMS that will manage its execution. The CSGrid middleware along

281

BreSci - 10º Brazilian e-Science Workshop

Figure 3. Conceptual view of the workflow SwiftGecko

Figure 4. Example of interface for workflow execution

with the execution environment of each SWfMS are responsible for the distribution of

jobs through the SINAPAD network.

SwiftGecko was used as a case example in order to evaluate the performance of

the integration. The workflow was executed with five bacterial complete genomes as in-

put, resulting in 135 task executions. The executions were performed in a 72-node cluster

with 16GB of RAM and 8 computing cores per node. In this evaluation, presented in

Figure 5, we measure the performance (total execution time) of SwiftGecko for serial

and parallel executions directly in the cluster and parallel through CSGrid, also using the

same cluster. Results present performance improvements of up to 47% in the parallel

execution time when compared to the sequential execution, which drops from around 8

minutes (using a single core) to around 4 minutes using 8 cores. The execution through

CSGrid presents improvements of approximately 23% when compared to the sequential

execution, dropping to 6 minutes. It is worth mentioning that the SwiftGecko applica-

tions use an out-of-core strategy and are I/O intensive. Therefore, scalability could be

improved by using higher throughput storage systems or more efficient data management

1Available at https://github.com/mmondelli/swift-gecko

XXXVI Congresso da Sociedade Brasileira de Computação

282

strategies. Regarding the execution of the workflow through the portal, in addition to the

submission and execution times, the file transfer time between CSGrid and the cluster is

also taken into account. For this reason, we can understand the difference between the

parallel executions in the cluster and through the portal.

serial parallel portal

Execution type

T
im

e
 (

s
e
c
s
)

0
1

0
0

3
0

0
5

0
0

Figure 5. Evaluation of the execution times of SwiftGecko workflow

4. Related Work

There are some approaches in the literature that present mechanisms to execute large-

scale scientific workflows. Globus Genomics [Madduri et al. 2014] presents a system for

rapid analysis of large quantities of next-generaton sequencing (NGS) genomic data. It

integrates Galaxy WfMS for the specification of a data analysis workflow, and Globus

tools for data movement and access-control management. However, the work is focused

only in the cloud infrastructure, using Amazon services to storage data and to execute the

data analysis pipeline.

Askalon [Nadeem et al. 2007] proposes an application development and comput-

ing environment to provide an invisible Grid to the application developers. It uses the

Unified Modelling Language (UML) diagrams to represent the workflow graphically. It

also provides an XML-based representation, to translate the UML diagram and pass it

to the runtime system to be scheduled and executed. Although the application involves

the concepts of workflows and Grids, instead of integrating existent systems, they built a

single system from scratch.

5. Conclusion

Providing scientific workflows through an application management system that operates

on a computational Grid environment as CSGrid, allows users to have access to more

resources to execute their experiments. This is an important aspect for users who do not

have the computing infrastructure needed to perform their executions. In this work, we

presented an approach to integrate SWfMSs with grid-enabled scientific gateways, pro-

viding a way to run through an interface workflows that previously needed to be run via

command line in the cluster. Thus, since the workflow is available through CSGrid, the

execution process becomes a transparent task for the user. We evaluate a bioinformatics

283

BreSci - 10º Brazilian e-Science Workshop

workflow for genome comparisons, which have demonstrated satisfactory performance

when executed through this infrastructure. As future work, we intend to support the prove-

nance that is already captured by SWfMSs [de Oliveira et al. 2010] [Gadelha et al. 2011]

to allow the analysis of information that is generated through the workflow execution.

In addition, we aim at integrating the SWfMS functionality with grid middleware

in a native way, through a prototype of a SWfMS with support to CSGrid developed in

SINAPAD called OSC Workflow Manager (GWO). This prototype uses a Open Scientific

Connectors (OSC) language to describe workflows [Medeiros and Gomes 2012] in which

the main feature consists in the interaction of tasks mediated by connectors. Tasks and

connectors interfaces are called, respectively, from ports and roles. A workflow described

in OSC is composed by linking tasks ports and connectors roles. Tasks, connectors, ports

and roles can be associated with properties that allow its parameterization.

OSC has basic types, used to associate abstract workflows concepts with its con-

crete implementation. A task can be, for instance, an executable program or an encapsu-

lated workflow and a connector may represent a file transfer or a character pipe. The lan-

guage also allows types of non-functional attributes to be combined with basic types, such

as task parallelism, fault tolerance and provenance tracking [Medeiros and Gomes 2013].

This combination is defined by the workflow developer, that may decide with great flexi-

bility in which parts the treatment is performed.

The OSC language was developed based on the architectural description language

known as Acme [Garlan et al. 2010]. Therefore, workflows described in OSC may be

graphically modeled by using AcmeStudio tool. The executable tasks of the workflow

defined during its modeling correspond to the CSGrid algorithms. After modeling, the

workflow can be stored in the GWO workflow repository and then executed, so that the

workflow model is transparent to the end user. Thus, to execute the workflow through

the GWO, the user must define the input and output parameters required for its execution.

The GWO is in charge of managing the execution through CSGrid, including parallel

execution of independent tasks. It also takes responsibility for the processing of non-

functional attributes included in the model by the workflow developer. In this way, the

various features that are available externally to SINAPAD infrastructure will be available

natively. This will allow for a better integration and control of the workflows within the

plataform.

References

de Oliveira, D., Ogasawara, E., Baião, F., and Mattoso, M. (2010). SciCumulus: A

Lightweight Cloud Middleware to Explore Many Task Computing Paradigm in Sci-

entific Workflows. In 2010 IEEE 3rd International Conference on Cloud Computing,

pages 378–385. IEEE.

Foster, I. (2001). The Anatomy of the Grid: Enabling Scalable Virtual Organizations.

International Journal of High Performance Computing Applications, 15(3):200–222.

Freire, J., Koop, D., Santos, E., and Silva, C. (2008). Provenance for Computational

Tasks: A Survey. Computing in Science & Engineering, 10(3):11–21.

Gadelha, L. M. R., Wilde, M., Mattoso, M., and Foster, I. (2011). Exploring provenance

in high performance scientific computing. In Proc. of the 1st Annual Workshop on High

XXXVI Congresso da Sociedade Brasileira de Computação

284

Performance Computing meets Databases - HPCDB ’11, pages 17–20. ACM Press.

Gadelha, L. M. R., Wilde, M., Mattoso, M., and Foster, I. (2012). MTCProv: a practi-

cal provenance query framework for many-task scientific computing. Distributed and

Parallel Databases, 30(5-6):351–370.

Garlan, D., Monroe, R., and Wile, D. (2010). Acme. In CASCON First Decade High

Impact Papers on - CASCON ’10, pages 159–173. ACM Press.

Gomes, A. T. A., Bastos, B. F., Medeiros, V., and Moreira, V. M. (2015). Experiences

of the Brazilian national high-performance computing network on the rapid prototyp-

ing of science gateways. Concurrency and Computation: Practice and Experience,

27(2):271–289.

Lima, M. J. d., Melcop, T., Cerqueira, R., Cassino, C., Silvestre, B., Nery, M., and Uru-

rahy, C. (2005). CSGrid: um sistema para integração de aplicações em grades com-

putacionais. In Salão de Ferramentas do XXIII SBRC. Anais do XXIII SBRC, pages

1207–1214.

Liu, J., Pacitti, E., Valduriez, P., and Mattoso, M. (2015). A Survey of Data-Intensive

Scientific Workflow Management. Journal of Grid Computing, 13(4):457–493.

Madduri, R. K., Sulakhe, D., Lacinski, L., Liu, B., Rodriguez, A., Chard, K., Dave, U. J.,

and Foster, I. T. (2014). Experiences building Globus Genomics: a next-generation

sequencing analysis service using Galaxy, Globus, and Amazon Web Services. Con-

currency and Computation: Practice and Experience, 26(13):2266–2279.

Medeiros, V. and Gomes, A. T. A. (2012). Towards Fully Configurable Support to Non-

Functional Attributes in Scientific Workflows. In IEEE eScience Early Results and

Works-in-Progress Poster Papers, pages 2–3.

Medeiros, V. and Gomes, A. T. A. (2013). Expressando Atributos Não-Funcionais em

Workflows Cientı́ficos. In Proc. of VII Brazilian e-Science Workshop.

Mondelli, M. L., Torreño, O., Ocaña, K. A. C. S., Mattoso, M., Wilde, M., Vasconcellos,

A. T., Trelles, O., and Gadelha, L. M. R. (2015). SwiftGECKO: a provenance-enabled

parallel comparative genomics workflow. In Proceedings X-Meeting 2015, page 268.

Nadeem, F., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M., Truong, H.-l., and Villazon,

A. (2007). ASKALON : A Development and Grid Workflows. In Workflows for e-

Science, pages 450–471. Springer.

Ocana, K. A., Oliveira, D. d., Ogasawara, E., Davila, A. M., Lima, A. A., and Mattoso, M.

(2011). SciPhy: A Cloud-Based Workflow for Phylogenetic Analysis of Drug Targets

in Protozoan Genomes. In Advances in Bioinformatics and Computational Biology -

6th Brazilian Symposium on Bioinformatics, BSB 2011. Proceedings, pages 66–70.

Torreno, O. and Trelles, O. (2015). Breaking the computational barriers of pairwise

genome comparison. BMC bioinformatics, 16(1):250.

Wilde, M., Hategan, M., Wozniak, J. M., Clifford, B., Katz, D. S., and Foster, I. (2011).

Swift: A language for distributed parallel scripting. Parallel Computing, 37(9):633–

652.

Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S., and Pamidighantam, S. (2008).

TeraGrid Science Gateways and Their Impact on Science. Computer, 41(11):32–41.

