XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

A Tool to Support Deployment of Scientific Software as a
Service

Maximilien P. M. De Bayser, Leonardo G. Azevedo,
Leonardo P. Tizzei, Renato Cerqueira

'IBM Research — Brazil
Av. Pasteur 146 & 138, Botafogo, Rio de Janeiro, RJ, Brasil — 22290-240

{mbayser, lga, ltizzei, rcerq}@br.ibm.com

Abstract. Most of existing e-Science infrastructure is based on shared, inter-
connected grids. This approach lowers the bar for access to large-scale com-
putational resources and makes possible the collaboration of geographically
dispersed teams. However, it requires a big up-front investment and the ac-
quired resources must be continuously maintained and upgraded. Cloud infras-
tructures are an alternative since resources can be allocated on demand and
recently have become more suitable for HPC (High-performance computing).
This paper describes our work on the installation and configuration automation
of software packages of transient grids based on Infrastructure as Code (IaC).

1. Introduction

Due to the large investment and maintenance costs of HPC resources, research organiza-
tions all over the world have tried to share and pool these resources in large computational
grids. Because they are based on voluntary collaborations between multiple tenants, ac-
cess to them is subject to administrative and political issues. Grids are often the result of
public funding, so their utilization must be high to justify the expenditure. Being a shared
resource, job submission mechanisms often enforce a fair use policy where everyone gets
the same priority. Giving different priorities is technically possible but often politically
complicated. As the computational resources are finite, it is only possible to obtain best
effort QoS guarantees [Singh et al. 2006].

The advent of commercial cloud computing has brought a different model of large
scale computing in which users pay only for resources they actually use. Another im-
portant feature of clouds is their elasticity, which means that resources can be scaled up
or down according to current demands. It has been proposed to use a commercial cloud
to complement grids in a hybrid model, where the cloud is used when grid resources
are depleted [Kim et al. 2009]. But most importantly, clouds support entirely virtual en-
vironments that can be set up and modified with great flexibility and without affecting
other users. This flexibility was noted as early as 2006 when Childs et al. realized that
they could implement replica grids or grid testbed simulating physical machines with
an entirely virtual environment [Childs et al. 2006]. More recently several entirely cloud
based grids were proposed focusing on reduction of costs, more flexibility, ease of use for
researchers without a computer science background and isolation between virtual grids
[Strijkers et al. 2010] [Rehr et al. 2012] [Singh et al. 2006]. These initiatives are what is
called a platform as a service (PaaS). In the beginning commercial cloud offerings were
not geared towards HPC requirements, but recently more powerful nodes are available.

317

BRESCI - VIII Brazilian e-Science Workshop

Be it physical or virtual grids, the management of configuration is far from trivial.
Different research groups use different software packages and operating systems and often
different versions of a same package are required generating installation conflicts. In
virtual grids this problem is reduced because there can be total isolation between virtual
grids, but it still is a considerable amount of work to assign each node a different role in
the system and manage the software stack.

Software tools such as SmartFrog' provide orchestration capabilities to distributed
applications, but do not support the installation of these applications. Other software tools
such as Chef? [Marschall 2013] and Puppet® (see section 2) support software installation,
but do not provide the abstractions for non-expert users.

This paper describes our work on Installation Service, a tool that aims to provide
uniform interface for several IaC tools making it easier to build virtual environments.
We already have an intuitive user interface that can be used by a non-expert user and a
REST(ul service interface that can be used to automate the provisioning of nodes that are
automatically added to scale the grid. We see the Installation Service as an important
component in a HPC PaaS architecture.

The tool has been used to deploy infrastructure and application softwares for a
computing and data-intensive scientific application. This application as a service in the
cloud. It is reuquires to install its dependencies (e.g. libraries, software packages). So,
Installation Service tool is used to install the softwares and manage dependencies and also
enable the customization of the cloud environment.

2. Background

Complex configuration management is not a problem only for scientific environments.
Software development companies also struggle with different environments and how they
trigger different bugs. Traditionally when the development team delivers a new version to
the operations team, a lot of problems are discovered because the production environment
is different. Often developers cannot reproduce the problems reported by the operations
team. This scenario led to the development of a methodology called DevOps, a portman-
teau of development and operations, that eliminates the division between the two teams
to create a pipeline of continuous delivery. DevOps extends the Agile philosophy to oper-
ations. A cornerstone of this methodology is the concept of Infrastructure as Code (IaC)
[Hiittermann 2012].

The idea of IaC is to write all the software requirements of a computational infras-
tructure in an executable form. On the node level, this means not only that there is a list of
the software packages that should be installed but also a set of scripts detailing how these
packages should be configured and customized. Packages such as the Apache web server
and OpenMPI usually require a configuration phase before they can be used. On the grid
level TaC means that there is a script that details how many nodes exist, which operating
system should run and which set of packages and configurations should be applied to each
individual node according to their role.

'nttp://www.smartfrog.org/
http://www.getchef.com/
http://puppetlabs.com/

318

XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

Currently there are several IaC tools such as Vagrant*, Chef and Puppet. The
improvement of these tools over simple shell scripts is that they provide a uniform and
concise notation, that is mostly declarative. They also assure a uniform interpretation of
the scripts even on different operating systems.

A big advantage of IaC scripts is that they can be kept under version control sys-
tems (e.g., Git). Hence, for each particular grid setup there is a corresponding version
of these scripts in the repository. When a problem occurs, it is easy for a developer to
recreate the environment where the problem appeared. This feature is also interesting for
open science. Many research institutes already open their source code making it easier
for other researchers to inspect, reproduce and validate their work or even to start a new
line of research based on an existing one. However the infrastructure setup is not always
trivial. If virtual lab setup scripts were published along with source code, it would be
much easier for other scientist to get up to speed.

3. Installation Service tool

We propose Installation Service, a tool whose main goals are: (i) Facilitate software in-
stallation (software applications and infrastructures) by inexperienced users; (ii) Enable
environment customization, e.g., selection of providers (e.g., Softlayer or OpenStack for
Virtual Machines provisioning), automation infrastructures (e.g., Chef or Puppet), and
operating systems (e.g., Linux or Windows); (iii) Provide an API that can be consumed
by other applications to automate software configuration following a SaaS (Software as a
Service) approach or it can also be deployed as part of a PaaS.

The current version of Installation Service allows to: (i) Bootstrap a node: it
makes a physical, virtual, or cloud location able to download and apply configuration
scripts; (i1) Upload/download of installation scripts to/from a server repository; (iii) Set
the installation scripts that should be executed on a node; (iv) Synchronize a node: update
the node configuration with its current configuration scripts list.

Installation Service is composed by two modules (Figure 1): Installation
Service APTI and Installation Service UI. The UI provides a user-friendly
web interface to manage software installation and configuration scripts. It consumes the
services provided by the APT. The AP T provides RESTful web services that encapsulate
IT automation platforms (currently Chef). Hence the APT consumers have a standard
interface that works with different I'T platforms.

The current version of the APT encapsulates Chef. Chef is an Infrastructure as
Code tool used to implement the automatic deployment and continuous integration of
the DevOps methodology. Chef is a systems and cloud infrastructure automation frame-
work to deploy servers and applications into physical, virtual, or cloud locations, named
as nodes [Marschall 2013]. The Chef encapsulation is done in three different ways: (i)
Bootstrap a node calling Knife - a command-line tool; (ii) Update the node using ssh
to connect to the node and to run chef-client - a program installed in the node during
bootstrap process whose responsibilities are to connect to Chef Server, download current
configuration scripts, and apply them to the node; (ii) All other operations are performed
invoking Chef Server REST API services.

*http://www.vagrantup.com/

319

BRESCI - VIII Brazilian e-Science Workshop

bootstrap / use ssh for
command-line process [Workstation bootstrap
" F——
(knife)

Cloud gyovider
. Virtual
CI!ent_ Installation Machine
application Service API
not bootstrap / usg chet
server API
Chef
Server Chef-client
(REST API)
Installation coolmm
> Service Ul recipes
User

Run chef-client to update the node installation
and configuration/use command-line process

Figure 1. High-level structure of the Installation Service

4. Conclusion

This work reasons on the transition from grid to Cloud Computing in e-Science. We
demonstrated that I'T automation tools for installation and configuration are required since
they improve the reproducibility of environment configurations. Our proposal of Instal-
lation Service evolves current tools allowing to use more than one tool simultaneously
to handle environment specific features. Our tool provides a friendly user interface and
supports multi-tenancy. It also exposes a service API that can be used as an infrastructure
component in a PaaS or as a stand-alone SaaS. The current implemented use cases are
presented in Section 3.

As future work, we are going to evolve Installation Service to provide new au-
tomation features, to work with other tools than Chef, to handle package life-cycle, and
consider semantic patterns to integrate with API consumer applications. We will also
evaluate the tool in real scenarios.

References

Childs, S., Coghlan, B., and McCandless, J. (2006). Gridbuilder: A tool for creating
virtual grid testbeds. In Proc. Intl. Conf. on e-Science and Grid Computing, pages 77—.

Hiittermann, M. (2012). DevOps for Developers, volume 1. Springer.

Kim, H., el Khamra, Y., Jha, S., and Parashar, M. (2009). An autonomic approach to
integrated hpc grid and cloud usage. In Proc. Intl. Conf. on e-Science, pages 366-373.

Marschall, M. (2013). Chef Infrastructure Automation Cookbook. Packt Publishing Ltd.

Rehr, J. J., Jorissen, K., Vila, F. D., and Johnson, W. (2012). High-performance computing
without commitment: Sc2it: A cloud computing interface that makes computational
science available to non-specialists. In Proc. Intl. Conf. on E-Science, pages 1-6.

Singh, G., Kesselman, C., and Deelman, E. (2006). Application-level resource provision-
ing on the grid. In Proc. Intl. Conf. on e-Science and Grid Computing, pages 83—.

Strijkers, R., Toorop, W., Hoof, A. v., Grosso, P., Belloum, A., Vasuining, D., Laat, C. d.,
and Meijer, R. (2010). AMOS: Using the cloud for on-demand execution of e-science
applications. In Proc. Intl. Conf. on e-Science, pages 331-338.

320

