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Abstract. Computer simulation of Gram-negative bacteria membrane is a
computational intense task that requires massive parallel computing. In
addition, these simulations require post-processing tools that are in general
not parallelized. Here we comment on the types of parallelizable analysis tools
and propose two new types of analyses that can be applied on such systems.

1. Introduction

One of the fundamental goals of the study of matter by computer simulations is the
description of measurable macroscopic properties in terms of microscopic ones. The
successful application of such methods strongly relies on post-processing tools to fully
understand and interpret these simulations. The main goal of post-processing tools is to
gather quantitative and qualitative information in order to boost the understanding and
interpretation of the simulation data. In the field of molecular dynamics (MD), the
simulation engines have been extended to take advantage of improved sampling
methods that, combined to, scalable algorithms allow for faster and longer simulations.
Since membrane fluctuations and motions span a wide range of time scales, large
trajectory files are generated. This problem is aggravated when simulating Gram-
negative bacterial membranes. These membranes are formed by molecules of
lipopolysaccharides (LPS) anchored to a phospholipid leaflet. LPS comprises of a
highly-charged carbohydrate moiety covalently bound to a variable number (4 to 7) of
acyl chains. Its shortest head group is formed by a couple of phosphorylated N-acetyl-
glucosamine molecules distributed along the lamellar plane. The dynamics of the LPS
membrane tends to be slower compared to cell membranes due to its heavily charged
carbohydrate moiety. In some cases, microsecond simulations are needed to produce
meaningful data (Kirschner, 2012). To assess these phenomena in silico, new types of
analysis and faster post-processing tools are needed.

One of our research goals is to develop analysis tools to extend the
understanding of Gram-negative bacterial membrane structure and polymorphism from
MD simulations. Bacteria biological activity depends on the intrinsic conformation of
its cell wall molecules (Figure 1), allowing for drug resistance and/or pathogenic and
immunological behaviors (Pontes, 2012). The quantitative structural classification of
bacterial membranes is a difficult task to be performed experimentally. Despite its
potential toxicity and therefore handling restrictions, these quantities have large intrinsic
errors associated that can reach up to 240% (Seydel, 2000). To overcome this limitation,
we have been developing novel analysis tools capable of evaluating the influence of

377



BRESCI - VIII Brazilian e-Science Workshop

physical chemical factors (ions, temperature, pH) as well as chemical variations in LPS
on the conformational polymorphism of Gram-negative bacterial membranes.

Figure 1. Typical membrane conformational states: a) lamellar; b) micelle c) planar
aggregate.

As it can be seen in Figure 1, lamellar to non-lamellar transition involves either negative
or positive curvature of the LPS membrane plane. To assess these transitions in
molecular dynamics trajectories, we have developed a sequential post-processing tool
written in C language and based on GROMACS library for full compatibility with
GROMACS input and output files (Hess, 2008). The program measures the distribution
of the sugar-sugar-membrane plane and head-tail-membrane normal vector angles. It
has been applied to trajectories of hundreds of nanoseconds for six different Gram-
negative membrane phenotypes. Our results showed shifts towards higher angle values
as a function of increasing in temperature for both angles. The expected result allowed
us to quantify membrane disorder as a function of LPS phenotypical variation (Pontes,
2012). To date, the code has been used on this single occasion and therefore systematic
performance benchmarks have not been carried out.

2. Analysis tools performance

Sequential post-processing tools do not scale nor have a performance compatible with
very long MD trajectories (Peterson, 2008; Kumar 2012a & Kumar 2012b). Nowadays,
MBD engines are able to produce terabytes of simulation trajectories and analyzing these
data imposes a stress on CPU, memory and 1/O. To illustrate, radial distribution
function (RDF) and linear mass density are typical analyses performed on membrane
simulations. The RDF algorithms require computation of three nested loops: i. the
outer-loop over the entire trajectory; ii. the middle-loop over the reference set of atoms;
and, iii. the inner-loop over the complementary set of atoms. Both tools were run in a
single node since they are not parallelized. The ratio between the times spent on the
RDF calculation between solute and solvent molecules divided by the total time spent
by the program is shown in Figure 2.
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Figure 2. Algorithm time divided by the total program time versus the number of atoms
for the RDF and Radius of gyration analyses.

For small systems the parallelization of the RDF code would not improve the
performance significantly, however with the increase in the number of particles the
RDF calculation spends 98% of the computing time.

3. Membrane curvature analysis

Depending on the ionic strength and temperature Gram-negative bacterial membranes
undergo phase transitions that promote membrane shape changes (Brandenburg, 1988;
Brandenburg, 1993; Brandenburg, 1997 & Seydel, 2000). The simple analysis of the
foretold angles is not enough to classify the membrane conformational state. Ripple-like
shapes (large negative followed by large positive curvatures) cannot be quantitatively
expressed in terms of the average tilt angles. To address this issue, we propose two
alternatives to measure membrane curvatures: using the Voronoi tessellation method
and by measuring the deviation of the membrane leaflets packed to a cylinder.

In the Voronoi tessellation method the seeds are the membrane head-group atoms and
the curvature can be measured by calculating the angle formed between two
consecutives seeds and the membrane normal vector (transmembrane plane) along all
the axis parallel to the membrane (Franz, 1991). Other properties measurements can
also take advantage of this approach, e.g., one can calculate the curvature dependent
density profile of the system along the membrane normal vector. The ratio between the
effective volume of the molecular subunit that constitute a membrane and a theoretical
cylinder-like shape dictates how far the membrane can be in the lamellar state (ratio <
0.3 and < 0.5) (Figure la), the micelle state (ratio < 0.3) (Figure 1b) and planar
aggregate (ratio > 0.5 and < 1) (Figure 1c). However, once the computation of the
effective volume of the molecular subunit is carried out for each phospholipid
composing the membrane and over several million frames, this task becomes highly
demanding. Therefore, a parallel implementation of this algorithm is a well sought-after
feature. Different approaches can be used like the Gauss-quadrature or the Monte Carlo
method.
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4. Conclusions

Simulation of LPS membranes and aggregates is a computational intense task that is
performed on parallel clusters. Depending on the bacterial membrane phenotype, us
simulations are required to achieve an equilibrated system (Kirschner, 2012). Typically
it is necessary between 30,000 to 60,000 core hours to simulate a single system.
However, the tools used for post-processing are not parallel, which results in an
inefficient time to solution for the user, as demonstrated for the calculation of the radial
distribution function. One of the most used analyses that can take advantage of
parallelization is the radial distribution function, Voronoi tessellation and the membrane
volume analysis. The latter have never been applied for membrane systems. The
development of these analyses tools is an ongoing effort in our group. Taken together,
they will be capable to characterize membrane structural polymorphism in an
unambiguously manner.
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