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Abstract. Breast cancer is the second most deadly disease worldwide. This se-
vere condition led to 627,000 people dying in 2018. Thus, early detection is
critical for improving the patients’ lifetime or even cure them. In this context,
we can appeal to Medicine 4.0 that exploits the machine learning capabilities to
obtain a faster and more efficient diagnosis. Therefore, this work aims to apply a
simpler convolutional neural network, called VGG-7, for classifying breast can-
cer in histopathological images. Results have shown that VGG-7 overcomes the
performance of VGG-16 and VGG-19, showing an accuracy of 98%, a precision
of 99%, a recall of 98%, and an F1 score of 98%.

1. Introduction

Breast cancer is a severe disease that attacks women primarily. However, about 1% of
men are also affected by it [INCA 2016]. In fact, breast cancer is the most common
cancer among women and the second one in general [AICR 2020]. The World Health
Organization estimates that this kind of cancer impacts 2.1 million women per year with
627,000 deaths, representing about 15% of all deaths caused by cancer [WHO 2020].
Thus, it is critical to perform the early diagnoses to start the treatment as fast as possible,
increasing the lifetime expectation and maybe getting the patient’s cure. Thus, Medicine
4.0 [Wolf and Scholze 2017] arises proposing using technology such as computer vision
and artificial intelligence to help physicians in this task.

In this work, we are engaged in evaluating how convolutional neural networks
(CNNs) classify cancer in histopathological images. During the assessment of images,
the pathologist looks for signs of malignancies to determine if a tumor is growing as
a malignant one [Titoriya and Sachdeva 2019]. On the one hand, the pathologist is the
expert who can confirm the diagnose. On the other hand, the expert is human; therefore,
he is subject to physical and visual distresses. In this context, computational tools become
essential for a precise and fast diagnosis.

The main problem with using CNNs is that these architectures usually involve
many layers, demanding considerable time to train them, especially when using large
datasets such as ImageNet. Thus, this work proposes a simpler CNN architecture that
can perform efficiently in classifying histopathological images. We used the VGG-16
as a baseline because it has presented good results, then tested a smaller configuration
named VGG-7 with no transfer learning, i.e., we trained our VGG from scratch using
only the BreakHis [Spanhol et al. 2016b] dataset. In this context, the work is divided as
follows: Section 2 shows some related works; Section 3 details the VGG architectures and
our proposal (VGG-7); Section 4 describes the configuration, the dataset, and the results



of our computational experiments; finally, Section 5 presents the conclusions and future
work.

2. Related Works

Convolutional Neural Networks have played an important role in image segmentation and
classification, especially in medical and biomedical applications. Particularly, the use of
CNNs in the field of medical research has been demonstrated in several works such as
[Gulshan et al. 2016], [Bej ], [Ismail and Sovuthy 2019], [Singh et al. 2020], and many
more. In the field of breast cancer detection, [Spanhol et al. 2016b] introduces a public
dataset ! composed of 7909 images of 82 patients. This dataset has been the main dataset
in testing machine learning algorithms, including CNN architectures presented by the
same author in [Spanhol et al. 2016a].

Regarding the VGGs, several works deal with the architectures’ classifica-
tion ability or try to improve it, especially in biomedical applications. For in-
stance, [Shallu and Mehra 2018] compares VGG-16 and VGG-19 against ResNet50
with and without transfer learning, showing that VGGs are more efficient than the
ResNet. In [Saikia et al. 2019], a study on the performance of VGG16, VGGI19,
ResNet-50, and GoogleNet-V3 is carried out in fine-needle aspiration cytology im-
ages, in which GoogleNet-V3 reached the best results after a fine-tuning. Fur-
ther, a novel attention-based deep learning model using VGG-16 is proposed by
[Sitaula and Hossain 2020] to improve COVID-19 classification using x-ray images get-
ting the best results. Furthermore, a modified VGG, called MVGG, is proposed and
implemented in [Khamparia et al. 2021] to increase the detection ability on 2D and 3D
mammogram image datasets.

As we can see, the field of using and studying deep learning models in the classifi-
cation of biomedical images, especially the VGG architecture, is vast. Thus, in this paper,
we propose a simpler VGG architecture, called VGG-7, to provide a faster training deep
learning model that also overcomes the efficiency of the classical VGGs.

3. The VGG Architecture

A CNN is a deep neural network that depends on the correlation of neighboring pixels
[Dabeer et al. 2019]. Thus, being devised to work with images made it achieved signifi-
cant success in image classification problems. In other words, working with images is the
nature of CNNs that makes them efficient in image classification.

The CNN architecture uses three kinds of layers. The first one is convolution, in
which a filter looks for particular features. That is why this layer is also called a feature
map. The second one is the pooling layer that re-samples the image, i.e., reduces its
dimensionality, consequently tending to reduce the overfitting. After using a combination
of convolutional and pooling layers, the output can be passed to a fully connected layer
for classification.

The VGG [Simonyan and Zisserman 2015], a popular CNN network, was intro-
duced in 2015. VGG-16 and VGG-19 are the most famous ones and are commonly used
for image detection. The number in front of the name stands for the number of weight

'The dataset is available in: http://web.inf.ufpr.br/vri/breast—-cancer-database



layers in the network. In this work, we propose a simpler version of VGG called VGG-7
that comprises the layers presented in Figure 1.
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Figure 1. VGG-7 Architecture

The VGG-7 model consists of four convolution layers divided into two blocks,
followed by max-pooling layers. Max-pooling can divide the images into several blocks
of the same size and only take each block’s higher value. Also, the global contextual
information with embedded channel-wise statistics was gathered with a global average
pooling layer. The three last layers are Fully-Connected (FC) ones: the first two ones
have 128 and 64 units, respectively, and the third one performs binary classification with
a sigmoid function.

We use 3x3 zero-padding convolutions layers with stride 1, each followed by a
rectified linear unit (ReLU) and 2 x 2 max pooling operation with stride equals 2 for
feature extraction. Either, we double the number of feature channels on each pooling
operation step. Then, during the training process, the input to VGG-7 is fixed-size with a
150 x 150 RGB image. The input images and their corresponding labels are used to train
the network with Adam optimizer [Kingma and Ba 2014] and Binary Cross-Entropy loss
function. All the kernels are initialized with a random uniform distribution procedure of
Xavier[Glorot and Bengio 2010]. We use class weighting to create a model where that
loss values for classes 'benign’ and 'malign’ will be multiplied by their corresponding
weight values to avoid unbalanced classes in the dataset.

Furthermore, the width of convolutions layers (the number of channels) started
from 32 in the first layer and then increased by a 2-factor after each max-pooling layer
until it reaches 64. The units of the last layers are relatively small to reduce computational
cost. The first Fully-Connected (FC) layer has 128 units that correspond to double the
filter from the previous max-pooling layer, and the second layer has 128/2 units. The final
layer is the Sigmoid layer responsible for the binary classification.

4. Computer Experiments

The application was implemented in Python 3.0 using recent versions of
TensorFlow[Abadi et al. 2015] and Scikit-learn [Pedregosa et al. 2011] library. The
code and the training step have been done in Google Colaboratory [Google 2020], which
was essential to this work because we can use GPU computing for training the CNN. The
virtual machine is a two CPUs Intel® Xeon 2.30 GHz, 14 GB of RAM, and 37.11 GB of
HD. Even though we used GPUs, the training step takes about 1 hour for each network
configuration.

The learning rate is Adam’s default, 0.001, the momentum equals 0.9, and gamma
equals 0.1. We train the neural network by slicing the data into batches of size 32 and



repeatedly iterating over the entire dataset for 50 epochs. Moreover, we tested two types
of sampling: hold-out (80/20 and 90/10) and k-fold (k¥ = 10) cross-validation.

4.1. Dataset

The dataset comes from Breast Cancer Histopathological Dataset [Spanhol et al. 2016b],
a public domain dataset made available by the Laboratory of Vision, Robotics, and Images
from Universidade Federal do Parana (UFPR). The dataset comprises 7909 images of
tumoral tissues from 82 different patients. The images have different zoom magnitudes
devised by 40x, 100x, 200x, and 400x as presented in Fig. 2, which shows a malign tumor.
Either, images are in the “png” format, having a resolution of 700 x 460pixels, three RGB
channels, and 8 bits depth in each one. Table 1 presents the number of benignant and
malignant tumors according to the magnitude.

Table 1. Dataset Structure

Magnitude | Benign | Malign | Sub-Total
40X 652 1370 1995
100X 644 1437 2081
200X 623 1390 2013
400X 588 1232 1820
Total 2480 5429 7909

(b) 100X

Figure 2. Malignant cancer in different magnitudes [Spanhol et al. 2016b]

4.2. Data augmentation

Data augmentation is essential to teach the network the desired invariance and robustness
properties when only a few training samples are available. We perform standard in-place
data augmentation techniques such as random rotation, random horizontal and vertical
flip, width and height shift range. We also pre-processed the inputs in the same way as the
original VGG [Simonyan and Zisserman 2015], in which we subtracted the mean RGB
value computed on the training set from each pixel. The complete set of operations are:
randomly flip horizontally, randomly flip vertically, random rotations of 50 degrees, width
and height shift.

4.3. Results

The first result regards the losses in the training stage using only hold-out sampling. Fig-
ure 3 shows the loss as epochs increase in 80/20 (a) and 90/10 (b). As we can see, the
error decreases faster and more than the other ones in VGG-7, reaching a value closer to
zZero.
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Figure 3. Training loss as the epoch count increases

Furthermore, our proposal presents a significant advantage over the other VGGs
because our approach needs to search for much lesser parameters than the other ones.
The total number of parameters is 82,209, 15,765,313, and 21,075,009 for VGG-7, VGG-
16, and VGG-19. Consequently, the training stage of VGG-7 is faster than the other
ones. Additionally, our proposal requires much less memory in both the training stage
and deployment or embedment.

Figure 4 shows the ROC curve of the three CNN architectures with the areas of
0.94, 0.87, and 0.89 for VGG-7, VGG-19, and VGG-16, respectively in 80/20 hold-out.
Then, considering that the ROC curve presents the probability of confirming the illness’s
presence, the figure validates the efficiency of our proposal.
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Figure 4. ROC Curves

Concerning the efficiency of hold-out sampling, Table 2 shows the confusion ma-
trix for the three VGG architectures, in which we can see that our proposal, the VGG-7,
classified 1540 images correctly, whereas VGG-19 and VGG-16 classified 1280 and 1290
correctly, respectively. All in all, the VGG-7 correctly identifies 260 and 250 more images
than VGG-19 and VGG-16, respectively. This means that at least 30 more patients will
undergo treatment.

In order to determine the efficiency of the CNN networks, Tables 3 presents all
metrics obtained by the experiment using the hold-out sampling using the rate of 80/20
and 90/10, respectively. As we can see, the VGG-7 overcame the classical VGGs in
all metrics, meaning that VGG-7 is more efficient than the other networks with fewer



Table 2. Confusion Matrix - VGG-7, VGG-19, and VGG-16 - Hold-Out: 80/20

VGG-7 VGG-19 VGG-16
Malignant | Benignant | Malignant | Benignant | Malignant | Benignant
Malignant 1100 32 1000 44 1000 39
Benignant 60 440 220 280 200 290

misclassifications. As expected, the generalization error tends to decrease as we increase
the training set size in all architectures. Nonetheless, VGG-7 overcomes the other ones in
all metric.

Table 3. Metrics - Hold-Out: 80/20 and 90/10

80/20 90/10
Metric VGG-7 | VGG-19 | VGG-16 | VGG-7 | VGG-19 | VGG-16
Accuracy | 0.94 0.83 0.85 0.95 0.69 0.86
Precision 0.95 0.83 0.84 0.96 0.69 0.86
Recall 0.97 0.96 0.96 0.96 1.00 0.96
F1 Score 0.96 0.89 0.90 0.96 0.81 0.91

Concerning k-fold cross-validation sampling, Table 4 shows the results of the
stratified cross-validation, i.e., the stratified re-sampling guarantees that the same dis-
tribution is used in training and test sets. As we can see, the VGG-7 outperforms the other
VGG version in all metrics.

Table 4. Metrics - K-fold (k=10) cross-validation

VGG-7 VGG-16 VGG-19
Average folder Accuracy | 0.98 + 0.02 | 0.97 £0.05 | 0.96 &+ 0.04
Average folder F1 score | 0.98 £0.02 | 0.98 £0.03 | 0.97 + 0.02
Average folder Precision | 0.99 £0.01 | 0.98 +0.02 | 0.97 4+ 0.03
Average folder Recall 0.98 +0.03 | 0.98 £0.05 | 0.98 +0.02

5. Conclusions

This paper proposed a simpler VGG neural network called VGG-7 for classifying breast
cancer in histopathological images. We trained the VGG-7 from scratch with no transfer
learning. Our proposal was compared against the classical VGGs (VGG16 and VGG19)
using transfer learning.

We also tested the classical VGGs with no transfer learning, achieving a lower
performance than using it; thus, we omitted those results in this work. Furthermore, our
proposal achieved 95% of accuracy, 96% of precision, 96% of recall, and 96% of F1
Score in 90/10 hold-out sampling. Moreover, the VGG-7 reached 98% of accuracy, 98%
of precision, 99% of recall, and 98% in the k-fold cross-validation test, overcoming the
other architectures as well.

Future work includes: (i) compare the VGG-7 against other CNNs architectures;
(i1) test the VGG-7 using other fully connected networks; (iii) add different classifiers,
such as SVM replacing the VGG-7 fully connected layer; and (iv) use VGG-7 with other



algorithms creating ensemble classifiers in order to improve the efficiency of the classifi-
cation.
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