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Abstract. The use of sensors in the agricultural domain generates a massive 

volume of heterogeneous data that must be treated, stored, and processed for 

decision-making. These decisions must be taken considering the diversity of 

devices and contextual information, which is often not considered but is 

important to the decision-making process. This paper presents an architecture 

to integrate data from sensors related to precision livestock farms. The 

integration and processing of these data can support decision-making, lead to 

more accurate results and enhance agribusiness sustainability. 

1. Introduction 

Agricultural farmers are increasingly using sensors to monitor food production, animal 

health, and welfare (Zhai et al. 2020). These sensors generate a large volume of 

heterogeneous data that needs to be treated, stored, and analyzed by intelligent 

applications. Based on this data, farmers can extract information and make strategic 

decisions.  

 In Agriculture 4.0, more specifically in livestock, sensors (Internet of Things 

devices, i.e., IoT) and data processing are called precision digital livestock (Zhai et al. 

2020). Precision digital livestock currently has challenges due to the complexity of 

managing data heterogeneity and the complexity of its relationships. Moreover, it 

includes issues associated with the environment, sustainability, economy, coexistence 

with other land uses, and climate change (Bahlo et al., 2019). These challenges create a 

problem for decision-making since the number of IoT devices has increased 

considerably (Zhai et al. 2020), making it difficult to process and combine data. In 

livestock, decisions usually need to be made considering the great diversity of these data 

and devices. As a result, information from the data context1, such as external 

temperature and humidity, rainfall data, and meteorological data for weather 

forecasting, to name a few, are often not used in the decision process. 

 

1 Context can be defined as a complex description of shared knowledge about physical, social, historical, 

or other circumstances in which an action or event occurs (Rittenbruch, 2002). 



  

 Combining technologies for precision livestock and precision agriculture can 

help farmers and managers monitor crops and animals in real-time. Besides, they can 

maximize productivity and profitability in agricultural operations, even improving the 

worker’s quality of life. In the literature, some works propose solutions to this problem. 

Roukh et al. (2020) solve the problem of collecting, processing, storing, and visualizing 

Big Data in agriculture. However, the authors do not explore external data, such as 

contextual data.  The decisions are made based only on data that are obtained by 

sensors. Xuan and Nhat (2019) present an architecture that uses external data for 

decision-making, but the architecture was designed to solve specific greenhouse 

problems and cannot be easily used in other domains.  

 This paper presents the e-Livestock architecture for collecting and processing 

heterogeneous data from sensors in real-time, also considering context information. The 

proposal is to specify an architecture that can be used in different agribusiness 

subdomains. The architecture was also designed to process the data traceability, 

considering the capture of provenance information2. The use of provenance data is due 

to external information can be added to the sensor data, and, thus, the architecture must 

be able to trace the origin of the information used in decision-making, reinforcing the 

data reliability.  

 This work is organized according to the following structure. Section 2 presents 

the background and related works. Section 3 presents the proposed architecture, as well 

as the evaluation. In Section 4, final remarks and future work are discussed. 

2. Background and Related Work 

The concept of Internet of Things (IoT) is related to the connection of a network of 

"objects" through the Internet without direct human intervention. The application of IoT 

in agriculture and livestock has advantages due to the possibility of monitoring and 

controlling many different parameters in an interoperable, scalable, and open context 

with the increasing use of automated sensors (Villa-Henriksen et al., 2020). In 

agribusiness, one of the innovations is its combination with data processing, allowing 

greater support in decision-making. One of the objectives of using IoT in livestock is to 

bring greater accuracy in the use of information for decision-making. According to 

Sprague (1980), a Decision Support System (DSS) combines models with data access 

and retrieval functions. A DSS is an application that supports different decision-making 

activities in a given domain (Belciug and Gorunescu, 2020).  

 Provenance provides a critical basis for assessing authenticity, trust, and 

reproducibility of decisions (Buneman et al., 2001). Provenance tracking allows data to 

be shared, discovered, and reused, simplifying collaborative activities (Ram and Liu, 

2007). Currently, the standard model for specifying data provenance is the PROV 

(Belhajjame et al., 2013). In the era of Big Data, information integration often needs to 

go through the extraction and loading of large volumes of data and diverse sources. This 

distributed data needs to be collected by appropriate equipment or software, and data 

storage management models must be provided for this data to be processed (Wang et al., 

2020). 

 

2 provenance data (Buneman et al., 2001) refer to “a type of contextual element that describes information 

about the origin of the data and its derivations”. 



  

 Xuan and Nhat (2019) discuss how context data, such as temperature and 

humidity outside the sensor environment, can impact production and farming and 

contribute to an accurate prediction of future temperatures. However, the authors 

focused on the solution for forecasting temperatures in the greenhouse. Our research 

aims to add, in addition to real-time meteorological data, other sources, such as external 

databases, social networks, and weather forecasting services. Fote et al. (2020) present 

an architecture using Apache Kafka3 to support the collection and Apache Storm for 

processing body temperature, vital data, movement patterns of livestock for animal 

welfare. However, the proposed architecture does not allow the integration of external 

data to enrich the context for decision-making. Roukh et al. (2020) propose an 

architecture for offline processing of multiple data sources, such as text files, 

spreadsheets, web services, and in real-time considering sensor data. However, the 

provenance of this data is not explored to enrich decision-making.The works discussed 

above present architectures related to specific contexts and cannot be generalized to 

other environments. Thus, to meet specific needs not discussed in the literature, the e-

Livestock architecture was proposed to deal with agricultural data diversity and 

integrate context and provenance data to support decision-making. 

3. e-Livestock Architecture 

The architecture is composed of five main layers, as shown in Figure 1. Sensor Tier: 

This layer is responsible for monitoring all sensors used in the physical space, for 

example, devices connected to the animal body or in the environment (context data). 

This layer was designed to deal with different types of sensors responsible for 

monitoring different environments. The data collected includes information about the 

environment, the animal, and the sensor identification. Platform Tier: This layer is 

responsible for data collection and processing, and integration with other data sources. 

Heterogeneous data can come from different sources. Considering the collection of 

streaming data, i.e., a large volume of data produced by the sensors, we use Apache 

Kafka. The Kafka Connector makes an interface for these data integration and Apache 

Flink handles the processing (Akil et al. 2017). Integration Tier: This layer is 

responsible for receiving and integrating the processed data. The integration layer can 

also aggregate information from other databases, services, and external APIs, such as 

weather data. The main advantage of this layer is to support the integration and storage 

of context metadata. Figure 2 presents the data model of our solution. External Sources 

Tier. This layer represents external services, databases, historical bases, social 

networks, or other external data sources. As needed, new fonts can be easily coupled to 

the architecture through the integration layer. When integrating social network data, it is 

possible to provide a new perspective for decision-making. This layer also collects and 

store provenance data. Visualization Tier: The visualization layer allows the farmer to 

view the data in real-time, according to a time interval, using a dashboard. It is possible 

to analyze and interpret the data at different granularities. 

 

3 https://kafka.apache.org/ 



  

 

Figure 1 – e-Livestock Architecture Overview4 

 

 

Figure 2. Sensors Data Model  

3.1. Data Provenance 

 To capture the data provenance, we used the PROV model as illustrated in 

Figure 3. This model can be extended based on specific domain needs. In our work, 

entities represent mainly the animals, agents are sensors that monitor it, and activities 

represent smart farm activities such as animal weighing and the processing of the 

collected data. Considering provenance data, it is possible to identify the data source, 

the interactions that the farmers and users carry out, and, consequently, we can trace the 

decisions. 

 

4 Apache Kafka was used to collect heterogeneous data (Jafarpour et al. 2019). Apache Flink is an open-

source system for processing streaming and batch data (Carbone et al. 2015). Flink was adopted to 

implement the architecture. For visualization, ThingsBoard4 was used, which is an open-source IoT 

platform capable of managing devices and presenting graphics. MongoDB was used for the data storage. 



  

 

Figure 3. PROV Model5 

 According to the model presented in Figure 2, the sensor data are persisted in 

MongoDB, including context data. An example of context data can be seen in Figure 4. 

It includes external temperature, humidity, and pressure. 

 

Figure 4. Context Data 

3.2. Evaluation 

 In order to verify the feasibility of the proposed architecture, we defined the 

scope based on GQM (from English Goal, Questions, Metrics): "Analyze the use of the 

architecture from the point of view of researchers for decision-making, in the context 

of the Compost Barn production system that focuses on livestock. The following 

question was defined: RQ. How can the e-Livestock architecture support the 

decision-making process on farms, combining the diversity of data generated 

considering context and provenance data?  

 The evaluation was carried out based on the collection and processing of data 

from a production system called Compost Barn (Embrapa Gado de Leite, 2020), located 

at EMBRAPA - Gado de Leite, experimental field. This system is part of a research 

project with Brazilian and international institutions related to improving the dairy cattle 

production system. Compost Barn aims to reduce maintenance costs of milk production, 

improve production and health of herds and enable the correct use of organic waste 

(feces and urine) from dairy activities. This space has sensors to monitor the 

temperature and humidity of the environment and lighting sensors. Continuous 

monitoring allows adjustments to the animals' living conditions, enabling increased 

production and quality of life. We used a set of data obtained from this real context. 

This data set contains the temperature and humidity inputs of the Compost Barn.  

 The Compost Barn production system has internal measuring equipment 

installed in the building and exhaust fans to control the temperature. The ideal is that the 

 

5 https://www.w3.org/TR/prov-dm/ 



  

internal temperature is 5 degrees less than the external temperature of the environment. 

As the temperature increases, more hoods are turned on to cool the environment. If a 

temperature exceeds the limit of 34º C, the system can communicate through the 

integration layer with external services and trigger an audible alarm. Figure 5 presents a 

set of internal temperature data from the environment, captured by the farms' sensors 

and used to verify the architecture's viability. The colors indicate a heat map, with 

colder blue, normal green, medium yellow, and high orange. 

 

Figure 5. Farm Dataset 

 This data is processed and sent to be integrated with external data sources and 

persisted in a database. The sensor data integrated with environmental context data are 

presented to the farmers through graphs and alert notifications, helping in the decision-

making. Also, they have an overview of the environment being monitored. Through the 

ThingsBoard interface, as shown in Figure 6, it was possible to trigger alarms based on 

rules. For example, device "A" performs a temperature reading of 24º C that exceeds the 

defined limit. As a result, a "High temperature" alert is generated. Each alarm has a 

severity that can be defined as Critical, Main, Secondary, Warning, or Indeterminate 

(ranked by priority in descending order). Users can also receive alert notifications via 

SMS and email. 

 

Figure 6. ThingsBoard with Evaluation Data  

 To collect the external temperature/humidity, the INMET website was used at 

the Compost Barn location. By analyzing context data, such as external temperature and 

climate forecast, farmers were able to make more sophisticated adjustments to the 

temperature, automating the process of starting exhaust fans. As a result, it was possible 

to avoid sudden changes that could affect the animals' production. Therefore, 

considering our research question (RQ), we have evidence that the e-Livestock 

architecture could meet the objective of processing Compost Barn data satisfactorily. 

Context data was integrated, following the model defined in MongoDB and provenance 

data, considering the PROV model. From the capture of provenance data, it was 

possible to track the decisions made and mitigate the alerts. Besides, decision-makers 



  

can be identified by providing a more transparent and reliable system. However, the 

results obtained cannot be generalized and additional evaluation should be conducted 

later. 

4. Final Remarks 

Decisions in agriculture need to be made considering the diversity of information and 

devices present in different contexts. Furthermore, context information is often not used 

in the decision-making process due to the complexity of managing a high volume of 

heterogeneous data. This work presents an architecture that aims to tackle the problems 

of collecting, processing, and visualizing data in real-time to support decision-making. 

Still, it was possible to support decisions with external information and data from other 

sources. By capturing the provenance data, we can mitigate events and track decisions 

made in the environment. Through the evaluation, it was possible to verify the 

architecture's feasibility considering context and provenance data applied in real rural 

environments.  

 For future work, we intend to integrate other types of data sources such as social 

networks and specify the provenance model for the agricultural domain. Also, to 

generate several e-Livestock architecture instances to create an ecosystem for 

agriculture, exploring aspects of collaboration, communication, and integration between 

farms to support the decision. Moreover, the combination and processing of additional 

data sources and sensors can lead to more accurate results, reduce costs, and maintain 

agribusiness sustainability. 
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