
Providing volunteer computing at the infrastructure level to
support e-science applications

Felipe Gutierrez1, Marcos Barreto1, Antônio Tadeu Azevedo Gomes2

1Distributed System Lab. (LaSiD), Federal University of Bahia (UFBA)
Av. Adhemar de Barros, s/n - Campus Ondina

40170-110 - Salvador, BA - Brazil

2National Laboratory for Scientific Computing (LNCC)
Av. Getúlio Vargas, 333 - Quitandinha

25651-075 - Petrópolis, RJ - Brazil

felipe.o.gutierrez@gmail.com, marcoseb@dcc.ufba.br, atagomes@lncc.br

Abstract. Cloud computing has become a well-established model to deliver on de-
mand storage and processing resources for several types of applications. It has
the same characteristic of elastic processing power present in volunteer computing,
which relies on an increasing number of resources shared for a limited period. In this
paper, we present the integration of the BOINC volunteer computing middleware at
the infrastructure level with a platform providing support for e-science applications
at the user interface level. Two case studies on protein docking and number sorting
are discussed in order to show how BOINC relates with such platform.

1. Introduction
Scientific (or e-science) applications have a computationally intensive behaviour, being com-
posed by complex tasks or large data sets that need to be executed and processed, respectively.
Bioinformatics, social simulations and earth sciences are examples of such kind of applications.
They demand specialized environments, such as clusters, grids, volunteer networks and clouds,
that allows for task distribution, collaboration, data management, among other functionalities
in order to execute.

Cluster architectures can support e-science applications by means of a significant num-
ber of processing nodes composed by multicore CPUs and, more recently, powerful GPUs. On
such systems, the user can exploit the hardware heterogeneity to better allocate his applica-
tion tasks aiming at high performance or reliability. Grid environments are well-established
platforms to run e-science applications, as in general they are designed from scratch target-
ing this kind of application. Cloud platforms present a layered approach to provide hardware,
databases, design environments, compilers, languages and software (applications) as “services”
that can be rent by the users according to their needs. The elasticity of computing resources is
one of the main goals of cloud environments, by which the number of processing nodes can be
increased or reduced in order to guarantee operational requisites imposed by the application.
Elasticity is also a prominent feature in volunteer computing environments, as a lot of current
projects are supported by hundreds of processing nodes. BOINC1 is arguably one of the most
well-known execution environments based on volunteer computing.

The focus of this paper is on the integration of the BOINC middleware with the mc2

(My sCientific Cloud) platform2. mc2 is a Brazilian project funded by RNP (Rede Nacional
de Ensino e Pesquisa) through its annual Working Groups Programme. This project aims at at
implementing a platform for providing scientific applications (single tasks or workflows) with

1http://boinc.berkeley.edu/
2http://www.rnp.br/pd/gts2011-2012/GT-MCC.html

1879



high-level user interfaces as services. The mc2 platform offers services focused on experiment
reproducibility, provenance and sharing. It relies on clusters, grids and volunteer computers
at the infrastructure (execution) level, in order to better comply with different operational req-
uisites related to memory, disk, processors, communication, performance and so on. In other
words, the project harness distributed resources to perform large-scale tasks. BOINC is one of
the execution environments available in the mc2 platform. Two case studies on protein docking
and number sorting are discussed in order to show how BOINC relates with such platform.

This paper is organized as follows: Section 2 presents some related work concerning the
utilization of BOINC as execution environment. Section 3 presents the mc2 project in terms of
its objectives, layers and resources. Section 4 describes the approach used to integrate BOINC
as an execution environment at the IaaS (Infrastructure as a Service) level of mc2. Section 5
shows how a protein docking application can be executed on mc2. Section 6 present another
study case with a sort program. Finally, Section 7 presents some concluding remarks.

2. Related work
In this project, we decide to use BOINC as a desktop grid component, but there are
other middlewares available at the internet, such as Condor [Litzkow et al. 1997] and
Xtremweb [Fedak et al. 2001]. BOINC was chosen because it permits an easy interaction (i.e.
a simple API) with other environments, it has a great community support and a large pool of
associated projects.

There are several works related to BOINC. The EDGeS project [Farkas et al. 2010]
aims at to create an integrated infrastructure that combines the advantages of service and desk-
top grids. It uses BOINC as a component of desktop grids and EGEE as a component of service
grids. BOINC middleware is also used to expand the reach of grid computing, by combining it
with others components, such as the Globus Toolkit [Myers et al. 2007]. In [Costa et al. 2011],
a BOINC prototype capable of executing MapReduce jobs is presented and discussed through
a simple word count application. CESC3 is another project that relies on BOINC as execution
platform for DNA sequencing and prime number calculation. A recent review on the usage of
BOINC as computing platform can be found in [Korpela 2012].

The support for scientific applications running over heterogeneous platforms is also
discussed in several available projects. Science Clouds4 is a project that allows for leasing re-
sources for short amounts of time. A user pertaining to a research community gets access to a
small, medium or large set of virtual machines that can be freely used according to his appli-
cation needs. Clouds and grid are also considered as execution platforms for large distributed
scientific and business applications [Sripanidkulchai et al. 2010, Niehörster et al. 2009].

3. The mc2 Platform
The purpose and main responsibilities of the mc2 project is to offer web portals to the users
that want to execute their scientific application. The way such portals are build is described
elsewhere [Bastos et al. 2013] and is not the focus of this paper.

Behind such portals, a set of specialized services is provided in order to hide from the
user all aspects related to resource management, communication, data transfer, etc. Figure 1
presents the mc2 layers.

At the SaaS (Software as a Service) level, a ”scientific user” is capable to execute single
(executable + input data) tasks or workflows, by means of dedicated portals developed specif-
ically for him. He does not need to know how the mc2 platform is structured. Another kind

3http://mamarreis.lsd.ufcg.edu.br/ciencia-em-sua-casa/
4http://scienceclouds.org/

1880



Figure 1. Layers of mc2 platform.

of user, ”the developer”, works at the PaaS (Platform as a Service) level, being responsible to
integrate e-science applications with PaaS tools and IaaS resources.

The PaaS level provides web tools to developers. These users are able to configure
web portals for custom e-science applications. Galaxy [Goecks et al. 2010] is a framework
to execute scientific workflows, focusing in reproducibility and accessibility. This tool offers
great customization capacity and sharing facilities for scientific workflows. The LDAP tech-
nology [Howes and Smith. 1997] is used to integrate, authenticate and authorize almost all the
components of mc2. CSGrid is a system for grids computing that has support for management
of distributed computational resources, data and users. The CSGrid and Galaxy are integrated
with LDAP technology.

The IaaS level is composed by a set of distributed frameworks, namely CSGrid
[Lima et al. 2005], OurGrid [Andrade et al. ] and BOINC, besides specialized clusters. CS-
Grid is a middleware composed by a central server and several client instances (named SGA).
SGA stands for ”Algorithms Management System” (Sistema Gerenciador de Algoritmos from
portuguese) and a BOINC SGA module was developed to integrate CSGrid and BOINC. This
integration can be considered successful if a mc2 user can operate an e-science application
installed on BOINC through the CSGrid interface. CSGrid is a middleware used for grid com-
puting, which is based on CSBase [Lima et al. 2006], a framework for resource management
and implementation of algorithms in distributed and heterogeneous computing environments.

CSGrid provides a service control, user access to hard disk areas, algorithms and ma-
chines. It facilitates the visualization of the file system, its permissions to read and write and
send event notifications. The SGA is a daemon tool installed on each machine, that monitors
the state of this machine and launchs processes. The integration of CSGgrid and SGA is im-
plemented in Lua and C++, and supported through CORBA in a SSI layer. When the SGA is
activated, it assigns to SSI and became available to the clients already connected to the SSI.
After that, a client can request the execution of some algorithm through SSI and monitor the
process until its conclusion. If the connection with SSI is interrupted, the SGA remains active.
When the connection is re-established, the SGA reassigns to the SSI again, stabilizing commu-
nication with the CSGrid. Figure 2 shows this integration. For laboratory tests this project was
implemented using NFS (Network File Systems) to the comunication between the CSGrid and
SGA, but for wide area networks the project uses CSFS, a module from CSGrid to share files
on network.

1881



Figure 2. CSGrid infrastructure [Lima et al. 2005]

The motivation to use the CSGrid framework is the increasing need for the coordinated
use of resources in distributed, heterogeneous computing environments [Foster et al. 2008].
These types of systems have a variety of platforms, applications and data decentralization. The
architecture of the system considerably increases the computational power to end users when
these computing resources are geographically distributed.

4. The SGA (Algorithms Management System) for BOINC
BOINC is a software platform that involves volunteer computing and grid computing. It was
projected to support applications that have large computing requirements. The main require-
ment of the application is that it can be divided in a large number of jobs that can be done
independently. So, it is better to use the BOINC platform if a lot of cheap computing processes
are necessary. To implement this, the BOINC platform can be set as volunteer computing or
grid computing.

Within the CSGrid infrastructure, the SGA is responsible for the execution of algo-
rithms (applications) on behalf of the CSGrid user. In our case, CSGrid evaluates the execution
flow and interacts with the SGA at the BOINC server in order to request the execution of a
given application in one or more BOINC client machines. It is possible to add more BOINC
client machines as needed. Figure 3 shows the interaction among all these components.

Figure 3. Communication among SGA BOINC components.

It is necessary to configure one file on the SGA machine in order for this machine to
be recognized as a computing node by the CSGrid server. This file is named sgad-cnf.lua and
its main part is presented in Figure 4. The attribute name is the localhost name of the SGA
node. The two other attributes that are mapped to directories are the local where the project of
CSGrid is build on SGA and where the algorithm is going to run. The last attribute is the name
of the lib file (SGA-BOINC.lua). This file is used to create tasks on BOINC server.

1882



Figure 4. The sgad-cnf.lua file.

The SGA program is installed at the BOINC server machine by a developer user.
Through the SGA interface it is possible to set how many tasks the user wants to create and the
input files to process. It is also possible to check the state of the tasks at the BOINC client ma-
chines. Figure 5 shows the SGA interface, which is accessible through the CSGrid application.

Figure 5. SGA BOINC interface.

5. Case study on Protein Docking
Hex [Ritchie 2003] is an application for interactive protein docking and molecular superposi-
tion. This program recognizes structures of proteins and DNA in PDB format, as well as read
SDF file that describes small molecules.

The Hex program can be found at the INRIA portal5. The application uses a hex.bat
file to read four input files. This file is presented in Figure 6. The file hex6i.x64 is the core of
the program. The application reads four input files and generates four output files. Figure 7
presents the two more important input files to process a Hex application. Hex has three output
files and one log file. They are very similar to the last input file, showing the values processed
from the last two input files.

DISC_CACHE 0
SESSION_LOG 1
RUN_MACRO 1CLV_r_u-1CLV_l_u.mac

Figure 6. File hex.bat.

However, to integrate the Hex program with BOINC, it is necessary to concentrate all
inputs into three files. The first one is the executable script (hex.bat). The second file is a zip file
containing the Hex application and related libraries (hex6i-linux64.zip). The last file is a zip file
with the input data (inputExemplo.zip). The BOINC server is able to decompress all these files
and execute the Hex application, sending the tasks to be processed at the BOINC clients. The
server does it through a wrapper function6. There are wrappers for different operating systems.
In this project, we used a wrapper for Linux x64 bits systems.

5http://hex.loria.fr/dist68/
6http://boinc.berkeley.edu/trac/wiki/WrapperApp/

1883



Figure 7. Hex input files.

Once the application is deployed at the BOINC server, it is possible to create tasks to
process the input files and attach the necessary zip data input file. It is possible to check the
state of the tasks on the BOINC-Hex web portal, a web service provided by BOINC server, and
also to download the results when they are complete7. When the BOINC client starts to process
the tasks, all application is downloaded from the BOINC server machine. The BOINC server
knows how to use all core processors available at client machines. It allocates tasks according
to the number of available processors. When the process ends, the results are uploaded to the
server and the user can access the web site to download the output files.

It is possible to check the time spent to process the job in the hex job X 0 2 log file,
where X is the number of the job. This file is the new name of the output file job.log, but there
is a job.log for all tasks. The web portal’s address is http://BOINC-IP/hex ops, where IP relates
to the BOINC Server machine and the prefix hex is the name of the application deployed on
BOINC server. Also through this link, it is possible to see the task name and find the respective
directory.

The mc2 execution flow starts at CSGrid, passes through the BOINC server and reachs
the BOINC clients. When the process finishes, the files come back to BOINC server and the
user can download them through CSGrid. It is also possible to download the files from the
BOINC-Hex web portal, as said before. But to improve the access of the scientific users, this
function was developed to integrate BOINC server with CSGrid. So the entire access flow
goes through the CSGrid. The process through BOINC server to the BOINC client and back to
BOINC server is autonomic. So this is a good point to compare a Hex process running alone
and a Hex process running under BOINC. Table 1 shows the time in minutes to process the
Hex application by itself and after running on BOINC client. We use the same machine on
both analyses, an Intel Core 2 Duo CPU E4400 2.0GHz x64 bits processor and 1GB of RAM.
The time exceeded on the BOINC was for the download and upload the Hex application and its
input and output files to the BOINC machines.

6. Case study on number sorting
We developed another application just as a proof-of-concept for SGA BOINC. A sorting pro-
gram based on bubblesort that reads a file with numbers and write these numbers ordered in

7http://boinc.berkeley.edu/trac/wiki/RemoteOutputFiles

1884



Table 1. Time to process HEX application.
Application Time in minutes
Hex 19.23
BOINC with Hex 22.01

another file. To deploy a C++ program in BOINC8 it is necessary to include some libraries and
BOINC functions. The program is larger than the original and apparently because of that its
processing will be slower. Thinking about this some measurements were made only with the
program with the BOINC libs, been executed alone and into the BOINC platform.

The table 2 shows the results for this program running standalone and at the BOINC
platform with different amounts of numbers. It can be noticed that the difference in process-
ing time on both execution settings remains stable as the amounts of numbers for ordering
increases. Therefore, the processing is not affected when deploying the program in the BOINC
platform.

Table 2. Time to process Bubblesort program.
Quantity Standalone (min) BOINC (min)
100,000 1.4393 2.1929
250,000 5.2126 6.3829
500,000 20.4487 21.5930
750,000 46.3036 47.1282
1,000,000 82.4396 84.0247

To measure the execution time, the same function that creates tasks on BOINC server
creates a file where the output files will be upload to the BOINC clients. When the clients
upload the results back to the server, it is possible to compare the times they were created.
We made both measures in the same machine we installed the BOINC client application. This
machine has an Intel Core 2 Duo CPU E4400 2.0GHz x64 bits processor and 1GB of RAM.

Since the objective of the mc2 project is to allow distributed process, the next exper-
iment considered two machines, with the same hardware and operating system, connected to
the BOINC server. These machines have two cores each, so they can start two process each
one. Using the same method, we compare the time while adding files to process. When we
upload four files, each machine got two files to process on their two cores. When we add more
files it is possible to check that the time grows less than the number of files. Thus, it is possible
to verify that decreases the processing time of the mc2 projects while increases the number of
machines BOINC client and the number of tasks to process. The table 3 shows the results in
minutes for different quantity of files.

Table 3. Time to process Bubblesort program in parallel execution
Quantity 4 files 8 files 12 files 16 files 20 files 24 files
100,000 2.3909 3.4605 4.0975 5.5348 6.2184 8.2448
250,000 6.2075 11.2920 17.1688 23.3935 29.2433 34.5128

7. Concluding remarks
Through the measurements, it is possible to conclude that the extra time (almost 3 seconds
in Hex application) is related to data movement between the BOINC server and clients, to

8http://boinc.berkeley.edu/trac/wiki/BasicApi

1885



send files to be processed and to gather back the results when available. On the bubblesort
C++ program, the time to transfer the files is the same even when the numbers to process was
increasing. Therefore, it is possible to conclude that as the load rises, it is better to deploy
the program at the mc2 platform. With these results, it is possible to release the IaaS layer of
the mc2 system to integrate with PaaS layer. It is also possible to share the data processed on
BOINC with data processed on OurGrid and other clusters on the IaaS layer.

References
Andrade, N., Cirne, W., Brasileiro, F., and Roisenberg, P. OurGrid: An approach to easily

assemble grids with equitable resource sharing.

Bastos, B. F., Moreira, V. M., and Gomes, A. T. A. (2013). Rapid prototyping of science
gateways in the brazilian national HPC network. In Proceedings of the 2013 International
Workshop on Science Gateways (IWSG). (Accepted for publication).

Costa, F., Silva, L., and Dahlin, M. (2011). Volunteer cloud computing: MapReduce over the
Internet. In Parallel and Distributed Processing Workshops and PhD Forum (IPDPSW),
2011 IEEE International Symposium on, pages 1855–1862.

Farkas, Z., Kacsuk, P., Balaton, Z., and Gombás, G. (2010). Interoperability of BOINC and
EGEE. volume 26, pages 1092–1103. Elsevier, future generation computer systems edition.

Fedak, G., Germain, C., Neri, V., and Cappello, F. (2001). XtremWeb: A generic global com-
puting system. Proceedings of the IEEE International Symposium on Cluster Computing
and the Grid (CCGRID 01).

Foster, I., Zhao, Y., Raicu, I., and Lu, S. (2008). Cloud computing and grid computing 360-
degree compared. pages 1–10. Grid Computing Environments Workshop, 2008. GCE 2008.

Goecks, J., Nekrutenko, A., and Taylor, J. (2010). Galaxy: a comprehensive approach for sup-
porting accessible, reproducible, and transparent computational research in the life sciences.
Genome Biol, 11(8):r86 edition.

Howes, T. and Smith., M. (1997). LDAP: programming directory-enabled applications with
lightweight directory access protocol. Sams Publishing.

Korpela, E. J. (2012). SETI@home, BOINC, and volunteer distributed computing. Annual
Review of Earth and Planetary Sciences, 40(1):69–87.

Lima, M. J. D., Melcop, T., Cerqueira, R., Cassino, C., Silvestre, B., Nery, M., and Ururahy,
C. (2005). CSGrid: um sistema para integração de aplicações em grades computacionais.
Anais do 23o. Simpósio Brasileiro de Redes de Computadores - SBC.

Lima, M. J. D., Ururahy, C., Moura, A., Melcop, T., Cassino, C., Nery, M., Silvestre, B.,
Reis, V., and Cerqueira, R. (2006). CSBase: A framework for building customized grid
environments. Third International Workshop on Emerging Technologies for Next-generation
GRID.

Litzkow, J. B. M., Tannenbaum, T., and Livny, M. (1997). Checkpoint and migration of unix
processes in the condor distributed processing system. University of Wisconsin.

Myers, D. S., Bazinet, A. L., and Cummings, M. P. (2007). Grid computing for bioinformatics
and computational biology. pages 71–85. 2 edition.

Niehörster, O., Birkenheuer, G., Brinkmann, A., Blunk, D., Elsässer, B., Herres-Pawlis, S.,
Krüger, J., Niehörster, J., Packschies, L., and Fels, G. (2009). Providing scientific software

1886



as a service in consideration of service level agreements. In Proceedings of the Cracow Grid
Workshop (CGW), pages 55–63.

Ritchie, D. (2003). Evaluation of protein docking predictions using hex 3.1 in capri rounds 1
and 2. volume 52, pages 98–106.

Sripanidkulchai, K., Sahu, S., Ruan, Y., Shaikh, A., and Dorai, C. (2010). Are clouds ready for
large distributed applications? SIGOPS Oper. Syst. Rev., 44(2):18–23.

1887


	BreSci - VII Brazilian e-Science Workshop
	Trabalhos Aceitos
	113864_1



