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Abstract. Due to low awareness and low investment in data collection and 
processing in developing countries, industry has struggled to plan and 
collaborate with public policy on data-driven socioeconomic decisions. This 
paper presents a deep learning approach to estimate socioeconomic indicators 
using satellite imagery. For this purpose, a region in southeastern Brazil called 
Vale do Ribeira was selected as a study case due to its data availability and 
environmental relevance. We used publicly available data to analyze three 
socioeconomic indicators: Longevity, Income and Literacy, the main 
representatives of the Human Development Index. Our preliminary results show 
a relevant correlation between satellite imagery and the income indicator, 
although they are not yet conclusive for longevity and literacy. 

1. Introduction 
Socioeconomic indicators are a useful tool for data-driven decision making in 
government policy. However, such indicators can be expensive, difficult to obtain, and 
time consuming. The difficulty of obtaining reliable data is even more pronounced in 
developing countries, where the development aid community faces barriers to accessing 
trustworthy and up-to-date socioeconomic information [Blumenstock, 2016]. Tipically, 
census surveys are collected every ten years. This periodicity creates a data gap that 
affects the interpretability of the survey results, as they may not reflect the socioeconomic 
reality in real time. In this context, alternative data collections such as cell phone usage 
data, satellite imagery, or commercial translations [Blumenstock, 2016] can be widely, 
low-cost, and easily accessible.  

 The scientific community is well aware of this challenge, as evidenced by the 
numerous efforts to predict poverty in Africa using satellite imagery [Jean et al., 2016; 
Yeh et al., 2020; Ayush et al., 2020; Burke et al., 2021]. Other approaches use not only 
satellite imagery but also street view imagery to measure social, environmental, and 
health inequalities [Suel et al., 2019; Machicao et al., 2022]. In this context, the use of 
DL methods can help provide valuable information for environmental and socioeconomic 
monitoring, facilitating initiatives aimed at sustainable development and biodiversity 
conservation in the national territory.   

 In this work, we adapted the DL methodology conducted by Jean et al. (2016), 
which aims to predict socioeconomic criteria in African countries based on satellite 
images of their territories. Our objective is to apply this methodology to the Brazilian 
context, more specifically to the Vale do Ribeira region as a case study for this approach 
due to the availability of data and its environmental and economic importance. Vale do 
Ribeira is the largest contiguous area of protected Atlantic Forest in Brazil, declared a 



 
 

 

Natural Heritage of Humanity by UNESCO (United Nations Educational, Scientific and 
Cultural Organization) in 1999. We used a census survey conducted by the Brazilian 
Institute of Geography and Statistics (IBGE). We aim to obtain similar results to the 
experiments in Africa. This ongoing project is part of the PARSEC research group 
(https://parsecproject.org/), which aims to explore a method for estimating 
socioeconomic indicators in a cost-effective and easily accessible way, and to further 
develop satellite imagery analysis for use in developing countries. 

2. Material and Methods 

2.1. Data Gathering 
Vale do Ribeira (VR) is located in the southeastern region of Brazil with an area of 28,306 
km² within the states of São Paulo and Paraná. It includes 30 municipalities divided into 
954 tracts, which are the subject of this experiment. 62% of this region is protected areas 
and its importance is determined by the well-preserved Brazilian Atlantic Forest, which 
represents 21% of the remaining forest in the country. Although it has a high economic 
development, this area is considered economically poor and has the lowest Human 
Development Index (HDI) in the state of São Paulo [Bueno et al., 2020]. 

 
Figure 1. The 30 municipalities of the Vale do Ribeira in southeastern Brazil (left). VR 
contains 954 census tracts, the boundaries of which are shown within each 
municipality. Statistics of census tracts, municipalities and states of VR (right). 

2.1.1. Socioeconomic indicators 
One of the most well-known and recognized indicators for interpreting socioeconomic 
development is the HDI adopted by the United Nations, which takes into account three 
dimensions: Health, Education, and Economic Development. Abreu et al. (2011) 
analyzed the documentation of social development at municipality level in Brazil using 
data from the IBGE to determine these three HDI dimensions. In this paper, we focused 
on the census tract level, so we use the method of Abreu et al. (2011) and adapt it for this 
purpose. We used 2010 census data from 
https://ftp.ibge.gov.br/Censos/Censo_Demografico_2010/Resultados_do_Universo/Agr
egados_por_Setores_Censitarios/ and created three proxy indicators: Longevity, 
Literacy, and Income, as follows: 
Longevity: As a health dimension of the HDI, we calculated the longevity of the census 
tract using data on life expectancy at birth given by Eq. 1.  

𝐻𝐷𝐼 − 𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦	 = 	 ("#	%	&')
()'	%	&')

           (1) 



 
 

 

Where LF represents life expectancy in years, 85 for maximum age, and 25 for minimum 
age, according to Atlas Brazil [PNUD 2012]. Abreu et al. (2011) calculated HDI-
Longevity by census tract, assuming that the municipal HDI represents the average of 
each census tract. Therefore, for each census tract, we sum the population by age and 
make the distribution based on municipal life expectancy to determine the age of life 
expectancy for the tract.    

Literacy: The education dimension of the HDI is composed of the period in which a 
population was formed. Abreu et al. (2011) suggested using a population's literacy as a 
proxy for this dimension because the IBGE census publications lack the specific question 
about the period of education. Therefore, we adopted the same concept by dividing the 
rate of alphabetized population into two different categories (𝒑 and 𝒒), where 𝒑 is the rate 
of alphabetized until 14 years old (end of elementary school), and 𝒒 is the rate of 
alphabetization after 14 years old. These two values are calculated using Eq. 2.   

𝐻𝐷𝐼 − 𝐿𝑖𝑡𝑒𝑟𝑎𝑐𝑦 = &*		+		,
-

                 (2) 

Income: The income indicator represents the economic development of a region and is 
directly linked to gross domestic product (GDP). The IBGE publishes GDP results 
annually at the national and municipal levels. Abreu et al. (2011) proposed the use of 
household income as a good proxy for the distribution of municipal income (Eq. 3). 

𝐻𝐷𝐼 − 𝐼𝑛𝑐𝑜𝑚𝑒 = ./(01)	%	./(23/)
./(245)	%	./(23/)

     (3) 

Where PC is the per capita income of a census tract, min = R$8.00 and max = 
R$4033.00 [PNUD 2012] are the reference values for minimum income and maximum 
income, respectively. PC is calculated as the division of the total nominal monthly income 
of responsible householders by the total resident population in the census tract. 

2.2. Satellite imagery  
We used two satellite data sources: Planet [Planet Team 2017] and Google Earth Engine 
(GEE) [Gorelick et al., 2017]. The Planet API was used to acquire daytime satellite 
imagery, while GEE API was used to obtain nightlight imagery. It should be noticed that 
the area of census tracts in VR is much smaller than the villages are of countries in Africa 
(original study by Jean et al., 2016). To aggregate the census data collected, it was 
necessary to create a cluster of images based on a 10 km x 10 km square centered on the 
smallest possible granularity: the census tracts. Each of these squares contained at least 
10 randomly selected coordinate points. For each point, an image (centered on the 
selected point) was downloaded from the Planet API. Before downloading the data, a 
nightlight image of the VR region was acquired using GEE API. This nightlight image 
was used as a filter to select only cluster segments that had at least some nightlight level 
(greater than zero). The purpose was to obtain only segments with human activity to 
reduce noise when training the model. The dataset used was from the United States Air 
Force Defense Meteorological Satellite Program (DMSP) in collaboration with the 
National Oceanic and Atmospheric Administration's National Geophysical Data Center 
[NOAA-NGCD, 2010]. Note that NOAA-NGCD provided a separate nightlight after 
2014 that is high resolution, but we did not use it because it does not match our survey 
years from IBGE 2010. 



 
 

 

Despite the large variety of Planet images, no image was returned for some of the 
points requested via the API. For example, only 4296 of the expected 8800 images were 
downloaded. In addition, 510 were deemed unsuitable for the study and discarded because 
they were edges of photos taken from satellites, i.e., they did not contain any part of the 
desired image. Thus, a total of only 3786 images were used for the experiment in Vale do 
Ribera, representing 43% of the points originally selected. It should be noted that satellite 
imagery or census data are not available for all 954 census tracts, as they may be rural 
and semi-rural and IBGE hides the data for privacy reasons. For this reason, we selected 
only 629 census tracts for our experiments (Fig. 2). 

 

Figure 2.  Map of Vale do Ribeira (VR). The 629 census tracts where satellite images were available 
are colored in blue, meanwhile, the light blue ones represent unavailable images, and the white 
correspond to census with no census data (for the three indicators). Random images samples were 
taken for some census tracts and respective socio-economic scores are shown. 

3. Proposed Deep Learning replication 
We proposed to replicate the experiments described in Jean et al. (2016) and to use as 
case study a Brazilian area, following the proposed workflow (Fig. 3). The methodology 
is as follows: (i) creation of a pre-trained model using a pre-trained Convolutional Neural 
Network (CNN) to learn the relationship between night light intensities; (ii) extracting a 
feature vector from the CNN output used for transfer learning so that each input diurnal 
satellite image corresponds to a feature vector and can be annotated with a socioeconomic 
indicator (HDIM dataset); and (iii) using a simpler regression model to predict 
socioeconomic indicators from the corresponding CNN feature vector output. Then, the 
prediction performance is quantified using the coefficient of determination (𝑟&) as known 
from Machine Learning (ML). 

 
Figure 3. Proposed workflow for the replication of the Deep Learning method of [Jean et 
al., 2016] for the Vale do Ribeira case. First (from top to bottom), a pre-trained CNN is used 



 
 

 

as a proxy for the poverty level by using nighttime satellite imagery for a supervised task 
of classification of luminosity levels. Second, the trained transfer learning network is used 
for daytime satellite imagery as feature extraction, such that a feature vector is obtained 
for each image sample. Finally, a ridge regression model is used to predict the 
socioeconomic values and evaluated by the coefficient of determination r2. 

3.1. Feature Extraction 

We used the VGG-11 architecture [Simonyan and Zisserman, 2014] pre-trained with the 
ImageNet benchmark [Deng et al., 2009]. We applied the transfer learning technique by 
fine-tuning the CNN model using satellite images with nightlights as proxies for the 
socioeconomic indicators. First, we used Gaussian Mixture Models as proposed by Jean 
et al. (2016) to clusterize the nightlight images into three luminosity levels (low, medium, 
and high) of 0-5, 5-14, and 14-65, respectively. Then, the pre-trained neural network is 
applied to a supervised learning task with three classes. Note that the VGG-11 was 
adapted by replacing the last dense layer of 1000 (by default) with a dense layer of size 3 
corresponding to the three luminosity levels.  
 

After training the CNN model to predict nighttime light intensity, we used this 
learned model as a feature extractor from the daytime satellite images. In doing so, we 
discarded the last layer of the model, the nighttime light intensity classification layer, and 
kept the feature maps from the last convolutional layer to compose the feature vector. In 
this way, the dataset of daytime satellite images is fed into the pre-trained network and it 
returns a feature vector with 4096 dimensions as output for each image sample.  
 

An interesting aspect of the method is that each census tract can have many 
images, where the position does not necessarily correspond to the actual location where 
the census was taken (for privacy reasons). Since there is one feature vector per image 
within a 10x10 km region, we averaged all these feature vectors as described by Jean et 
al. (2016). The final step is to actually train these feature vectors using Ridge regression 
to predict the socioeconomic indicators. 
3.2 Training and Performance Evaluation 

The dataset was divided into 80% for training and 20% for testing, according to the 5-
fold cross-validation for all experiments. This validation is a statistical method used to 
evaluate the predictive ability of a model in general. To measure the performance of this 
method, we calculated the coefficient of determination in the cross-validation according 
to Eq. 4, where N is the number of census tracts with satellite images. 𝑦 is the real HDIM 
value, 𝑦6 is the value predicted by the regression model, 𝑦7 is the average of 𝑦6 and  𝑟& ∈
[−∞, 1]. In ML it is well established that closest 𝑟& values as close to 1 as possible 
indicate positive correlation, which quantifies the predictive quality of the model. Thus, 
the higher the value, the better the performance of the predictive model. 
  

𝑟&(𝑦, 𝑦6) = 1 − ∑ (7%78)!"
#

∑ (7%79)!"
#

     (4) 



 
 

 

3. Results 
We used the three socioeconomic indicators: HDI-Longevity, HDI-Literacy and HDI-
Income, and we trained the DL model according to the proposed workflow. Figure. 4 
shows a plot comparing real and predicted value, indicating the coefficient of 
determination (r2) for each of the three indicators.  

 
Figure 4.  Results obtained for Vale do Ribeira. Each plot corresponds to the graph of 
predicted versus real for each of the three indicators. The coefficient of determination r2 

shown was calculated by cross-validation. 

3.1. Longevity  
Three different features can be observed for the longevity index (Fig. 4a). First, one can 
see that the data points appear in columns. This is due to the structure of the numbers in 
the real longevity index, as they are discrete and rounded values. At the same time, the 
predicted values are continuous representations. Second, the main cluster of points is 
right-sided. This is because VR has a high longevity rate, based on HDI-Longevity (Eq. 
1), at least for the census tract where we collected images and census data. Third, we 
obtained a coefficient of determination (r2	= 0.25), which is not a large value. In this 
particular case, the missing data could have a negative effect on the index in addition to 
the different data structures already described. 

3.2. Literacy 
For the literacy index, we obtained (r2 = 0.22) (Fig. 4b), which is consistent with the results 
for longevity in two aspects. First, it is possible to explain the literacy index by the high 
alphabetization rate in the studied region, but we only considered cluster sections for 
which downloaded images and census data were available. Second, the literacy rate is 
also not ideal, with a coefficient value smaller than that of the first index. This can be 
explained by the same reasons mentioned earlier, namely the lack of downloaded images. 
Nevertheless, it would be interesting to repeat this index with more recent and reliable 
data sources to obtain more solid conclusions about the correlation. 

3.3. Income 
The income index (Fig. 4c) performed best in the experiments. For this index, we can 
note that the coefficient of determination (r2 = 0.35) is the highest among the three studied. 
Compare this with the work of Jean et al. (2016), where the authors obtained the best case 
(r2 = 0.55). The correlation coefficient is not ideal, but from the plots produced we can 
see that the real and predicted values are proportional. A clear crescent line can be seen, 
that is, when the real values are low or high, the predicted values are also proportionally 



 
 

 

low or high. These results show that our work can approximately predict the census index. 
It can be concluded that the algorithm is very promising in predicting socioeconomic 
indicators from satellite images. 

4. Discussions and Conclusions 
In this paper, we have presented an approach that is interesting not only for its 
computational potential, but also for its low resource consumption and the wide 
availability of satellite imagery, which can be collected more frequently compared to the 
census surveys taken every ten years. This periodicity limitation, is the main motivation 
to search for computational approaches based on machine learning.  

 Our experiments showed that the income estimation model produced the most 
promising result and was consistent with intuition: the wealth of a region is reflected on 
the visual aspects of the area captured by satellite image. Longevity could also be 
reflected in the region's photos, but the algorithm did not perform as well as the 
experiment on income. Literacy, however, remains inconclusive as it has no obvious 
relationship with the satellite imagery, but still corresponds to some degree with the 
income indicator as wealthier families tend to be literate. 

 We should mention our main limitations that could significantly affect the 
efficiency of our results and suggest possible ways to improve performance. Our dataset 
is sparse compared to the experiments of Jean et al. (2016) in Africa. This is mainly 
because the algorithm to download images from the region using the Planet API did not 
fully cover the region due to the gaps, and possibly the input to the training algorithm was 
biased by the availability of the images, which negatively affected the model accuracy. 
Perhaps the quality of Planet's output image was acceptable.  

 Further studies could focus on optimizing the coefficient of determination and 
covering a larger area to increase the accuracy of the model. It is hoped that when the 
2021 IBGE census is released, the data collection will be adjusted to better utilize the 
newly obtained census survey and investigate time stamp estimation. Besides, in our 
experiment we used VGG architecture, mainly to compare with the results from the 
original work. On future work, it could be interesting to use other neural networks 
architecture, as well as the use of more diverse datasets to be extended to regions other 
than the Vale do Ribeira, possibly using different granularities (from census tracts up to 
the municipality level). To better understand the nuances of the learning process, it would 
be interesting to explore convolutional neural network visualization techniques to better 
understand the reliability of the algorithm and explore methods of explainable artificial 
intelligence. 
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