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Abstract. Spatial-temporal motif analyzes can provide insights into the data. It
can also be particularly interesting to analyze spatial patterns by fixing a time
slice. One variable in which the space and time relationship is present is the Sea
Surface Temperature (SST). SST is related to several natural phenomena that
severely impact the lives of millions of people. The SST can also be analyzed
in a time slice, seeking to discover the spatial relationships that may reflect
sea currents’ behavior at a given moment. This work evaluates a method for
identifying motifs in spatial-temporal series by comparing the occurrences of
these motifs with previously mapped sea currents. As a proof of concept, the
objective is to identify the North Brazil Current. This current is affected by
the Intertropical Convergence Zone, identified in the extensive bibliography as
responsible for the droughts in northeast Brazil. For this, after the discovery of
spatial-temporal motifs, a linear regression of each found motif is performed.
The angle of this regression is then compared to the current presented at the
Windy platform. The proposed method achieved 70% of hits within the ten best-
ranked motifs.

Resumo. As análises de motifs espaço-temporais podem fornecer intuições so-
bre os dados. Também pode ser particularmente interessante analisar os padrões
espaciais fixando-se uma fatia temporal. Uma variável na qual a relação es-
paço e tempo é presente é a da Temperatura da Superfície do Mar (TSM). A
TSM está relacionada aos diversos fenômenos naturais que impactam severa-
mente a vida de milhões de pessoas. A TSM também pode ser analisada em uma
fatia de tempo, procurando-se descobrir as relações espaciais, que podem re-
fletir o comportamento das correntes marítimas em um determinado momento.
Este trabalho avalia um método de identificação de motifs em séries espaço-
temporais por meio da comparação das ocorrências destes motifs com correntes
marítimas previamente mapeadas. Como prova de conceito, o objetivo é ser ca-
paz de identificar a Corrente Norte Brasil, corrente que é afetada pela Zona de
Convergência Intertropical, identificada em ampla bibliografia como respon-
sável pelas secas no nordeste do Brasil. Para isso, após a descoberta de motifs
espaço-temporais, é feita uma regressão linear de cada motif encontrado. O
ângulo dessa regressão é então comparado com o ângulo no qual a corrente
está se movimentando de acordo com a plataforma Windy. O método proposto
foi capaz de atingir resultados de 70% de acerto dentro dos dez motifs mais bem
ranqueados.



1. Introduction
Several areas search for patterns to understand specific behaviors of the phenomena they
study, such as weather forecasting, wind generation, and image recognition. It is impor-
tant to emphasize that each phenomenon studied has its particular character. It is neces-
sary to analyze their relationships in time and space in some cases. An example would
be the prediction of the Sea Surface Temperature (SST) through data obtained by several
geolocated sensors [Salles et al., 2016].

Spatial-temporal motif analysis provides some insights into the data. From them,
we observe the same pattern repeating itself in space and time. For example, the discovery
of motifs in seismic datasets brings relationships with horizons present in the subsoil
[Borges et al., 2020b]. It can also be particularly interesting to analyze spatial patterns
by fixing a time slice. An example would be the SST, which can bring information about
the sea currents when analyzed in a time slice. In this article, the North Brazil Current
(NBC) patterns are analyzed using the TSM dataset obtained from the National Oceanic
and Atmospheric Administration (NOAA) [NOAA, 2022].

Therefore, the Combined Series Approach (CSA) [Borges et al., 2020a] method
was used to discover spatial motifs in a time slice. The discovered motifs were con-
fronted with the angulation of sea currents movement of the Wind map & weather forecast
(Windy) [Windy, 2022]. From the exact latitude and longitude positions of the occurrence
of the motif, a linear regression of the occurrences was performed to obtain the angula-
tion of these patterns. Such angulation was compared with the angles reported in Windy.
It was possible to verify which motifs are associated with the real behavior of the NBC
current. The proposed method could associate 70% of the top-10 discovered motifs to the
currents.

This work is divided into six sections. In the 2 Section, the spatial-temporal motifs
are defined. In the 3 section, the related works are presented. Section 4 presents the
proposed method and the dataset used. Section 5 addresses the results achieved. Finally,
Section 6 makes the final remarks.

2. Spatial-temporal motifs
A spatial-temporal series can be described as a pair (t, p), where a time series t is asso-
ciated with a spatial position p [Shekhar et al., 2015]. This position in space can be of
different types, such as geographic coordinates or any other reference representing the
location where the data were observed. If the position varies with time, it is a trajectory
spatial-temporal series. Otherwise, it is a permanent spatial-temporal series [Borges et al.,
2020b].

Given a sequence q and a time series t, q is a motif of t with support σ, if and
only if q is included in t at least σ times. The length of a q motif (|q|) is called the word
size. Formally, given a sequence q and a time series t, where W = sw|q|(t), motif(q,t,σ)
⇐⇒ ∃R ⊆ W , (|R| ≥ σ), such that ∀wi ∈ R, wi = q [Mueen, 2014].

When analyzing a set of spatial-temporal series D, it can be seen that there are also
patterns that are frequently not only in time but also in space. These patterns are known
as spatial-temporal motifs. One can formalize a spatial-temporal motif as a subsequence
q that occurs at least σ times in D and occurs in at least κ different close spatial-temporal



series, where σ and κ are two support values such that σ ≤ κ [Borges et al., 2020b].
The process for discovering spatial-temporal motifs is composed of five steps: (1) nor-
malization and indexing; (2) partition of the spatial-temporal series; (3) combination of
blocks and discovery of motifs; (4) aggregation and evaluation of constraints; (5) ranking
of found motifs.

In Step 1, the dataset is normalized to z-score and indexed via Symbolic Aggre-
gation Approximation (SAX) [Lin et al., 2007] of size a. In Step 2 the spatial-temporal
series are separated into blocks (B) space-time: temporal block size (tt) and spatial block
size (te). In Step 3, all the k sequences within a block are combined into a single time
series (CS). Thus, CS is the concatenation of the sequences within the block bi,j . For-
mally, cs = q1|| · · · ||qk and |cs| = te · tt. Then, a traditional time series motif discovery
algorithm is applied.

In Step 4, the motifs found in each block are evaluated by two constraints: (i)
whether the number of occurrences of the pattern is equal to or greater than σ; (ii) whether
the number of spatial-temporal series is equal to or greater than κ. Finally, in Step 5, we
seek to distinguish the motifs through a ranking. Such ranking considers the entropy of
the motif, the number of motifs occurrences, and the distance between motifs.

3. Related Works

Both works involving spatial-temporal motifs and those based on pattern discovery using
NOAA datasets were analyzed. Regarding the discovery of motifs, there are several tra-
ditional approaches to discovering motifs in time series [Torkamani and Lohweg, 2017].
They can be divided into exact methods [Jiang et al., 2008; Mueen et al., 2009] and ap-
proximate methods [Chiu et al., 2003; Lin et al., 2007].

Du et al. [2009] analyze the trajectory of financial data in a state-space model
of the companies and corporations to which these data belong, analyzing motifs in the
trajectory of company data. Likewise, Oates et al. [2013] analyzes trajectory data from
moving objects. In both cases, the approaches are significantly different from the CSA
[Borges et al., 2020b]. The CSA assumes that the analyzed data are collected in fixed
positions, unlike the others, which focus on studying trajectories.

Regarding works using NOAA datasets, one can find mainly those focused on
attesting to the accuracy of the data provided by the agency [Sakaida and Kawamura,
1992; Huang et al., 2021] and validating the data [Li et al., 2001]. Sakaida and Kawamura
[1992] review linear (MCSST) and nonlinear (CPSST) regression equation algorithms
that estimate SSTs in the oceans around Japan. Huang et al. [2021] analyzes several
NOAA SST products, comparing the data with readings from buoys and floating sensors.
Finally, Li et al. [2001] validates SST data from two NOAA satellites, using two different
SST algorithms, one nonlinear (NLSST) and one multichannel (MCLSST) in the Gulf of
Mexico, Northeast and Southeast USA, and Great Lakes.

In addition to these, Xylogiannopoulos et al. [2019] propose the use of big data
analysis to find multivariate motifs in diverse climatic data for a location in a given period.
This process differs from the one presented in this work, both in terms of the type of motif
sought and the type of data analyzed. However, it points out the importance of studying
and analyzing motifs in climatic data.



4. Method

This work aims to detect NBC behavior by comparing Windy’s angulation data with the
motifs found in NOAA’s dataset using CSA. Figure 1 summarizes the proposed method.
The process begins with the SST data extract, transform, and load (ETL) steps. The
chosen NOAA dataset was OI SST V2 High Resolution Dataset1.

Figure 1. Proposed process

The dataset presents a 1440 x 720 dimension grid covering latitudes between
89.875S to 89.875N and longitudes between 0.125L to 359.875L. Both latitudes and lon-
gitudes vary by 0.25 at each position on the grid. This dataset has daily SST data from
1981 to 2021. With this dataset you can discover patterns and compare them to Windy’s
real-time data.

Figure 2 contains the entire geographic space that the NOAA dataset covers and
the temperature readings for October 4, 2021, using as a base a color palette ranging
from increasing purple-pink with transitory colors such as blue, green, orange and yellow.
Temperature readings are in degrees Celsius and range from -1.8°C to 33.32°C.

On the SST set was normalization by z-score and SAX indexing (a = 11). Next,
CSA is applied to discover and rank motifs using the R package STMotif 2. Since the
objective is to analyze a time slice, the latitude dimension was associated with time, and
the longitude dimension was associated with space. In this context, the following param-
eterization was used for the CSA: w = 4, te = 20, tt = 10, σ = 3 and κ = 2. The
occurrences of each motif underwent a linear regression to characterize a direction. The
angle of the discovered top-k motifs was compared to the currents lifted on the Windy on
a given day.

In Windy’s ETL process, the data of the analyzed stream is enriched. An average
angulation of sectors in the region of interest is produced. These data were adjusted

1https://www.psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html
2https://cran.r-project.org/web/packages/STMotif/index.html

https://www.psl.noaa.gov/data/gridded/data.noaa.oisst.v2. highres.html
https://cran.r-project.org/web/packages/STMotif/index.html


Figure 2. NOAA SST Preview for October 4, 2021

to characterize the direction of the currents. It enables the comparison with the motifs
discovered within the latitude and longitude ranges in which the current is found. Finally,
tolerance is adopted as the individual current measurements are discretized in ten-degree
intervals. It is based on a confidence interval between the difference in the angulation of
the discovered patterns and the average value of the current in a certain interval.

5. Experimental Evaluation
We only have real-time Windy angulation data available. We collected the angulation data
for October 4, 2021, as a Gold-standard to evaluate our proof of concept experiment. The
objective was to evaluate whether the arrangement of the motifs occurs in agreement with
the currents observed. One of the challenges faced is the perception that some currents
are underwater; therefore, this type of stream may not be able to be identified by the SST
dataset.

In Figure 3, it is possible to observe the currents that are present between the north
of Brazil and Africa. The colors represent the speed at which the water is being moved.
Its intensity decreases through a palette (white, blue, pink, orange, green, and gray). The
NBC corresponds to the pink, blue and white areas that start above Fortaleza and continue
to a little above Amapá. In this region, retroflection occurs, and we observe a blue band
in the opposite direction, which corresponds to the North Equatorial Countercurrent.

Notably, the NBC is the current that stands out the most for the intensity of the
movement compared to others in the same region. Furthermore, the NBC is currently
affected by the Intertropical Convergence Zone (ITCZ) and, therefore, relevant to the
rainfall distributions in the north of the Brazilian Northeast, of great value for study.

A dataset clipping was made with fifteen degrees of longitude by seven degrees
of latitude to analyze the desired data. It corresponds to the latitudes between 0.125N and
7.375N and the longitudes between 48.875W and 34.125W. In Figure 4, it is possible to
visualize the stretch of the Atlantic Ocean that represents the area that was used for the
experiments.

The direction of current movements was disregarded to compare the Windy dataset
angle with the linear regression angle. We took in taking into account only the angulation.



Figure 3. Movement of sea currents affected by the ITCZ in Brazil

Figure 4. Region analyzed: 0.125N to 7.375N (lat) and 48.875O to 34.125O (long)

Finally, these angles are compared with the angles of the discovered top-k motifs.

Figure 5. Overlay of NBC angulation with Windy sea current movement data on
October 4, 2021. The red marking indicates occurrences of the aaab motif in the
region

From the lists of motifs discovered in the study region, each mapped angle is com-
pared with the motif angle obtained through linear regression for the top-15 discovered
motifs. To exemplify the execution of this step, we calculate the linear regression of the
aaab motif. In Figure 5, it is possible to observe the occurrences of the motif aaab in
space through the red dotted markings. The markings bring a line represented by the
equation y = −0.31x+ 9.7. Furthermore, from the arctangent of the angular coefficient,



−0.31, an angle of 162 was obtained. As a result, the motif aaab was validated since the
value felt within the confidence interval of 160 degrees. The procedure was done for the
remaining top-15 motifs. Therefore, a list of nine validated motifs was obtained, namely:
kjih, cbaa, aaaa, kkkk, baaa, kkji, cbba, gfee and aaab. We got a 70% validation rate
for the top ten (top-10) and 60% validation for the top fifteen (top-15).

6. Conclusion
In this work, a methodology is proposed for the identification of sea currents from the
discovery of spatial motifs from a time slice of the SST dataset. SST data were analyzed
using the CSA algorithm to identify spatial motifs in a time slice. Due to the fixed time
setting, the longitude was associated with the space dimension. Additionally, the latitude
was associated with the time dimension in the CSA. For each motif, a linear regression of
its occurrences and the angle of this regression were calculated. The angle of occurrences
of each motif was compared with the average angle of movement of sea currents obtained
in Windy.

From the proof of concept study, the performance of the proposed method indi-
cated that 70% of the ten best-ranked motifs presented a direction compatible with the
analyzed currents, reaching the objectives of this work. The results achieved open space
to study the discovery of spatial-temporal motifs formed from compositions of spatial
patterns that can be repeated in time.
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