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Abstract. Structure-Based Virtual Screening (SVBS) is a technique traditionally used to find 

a set of specific inhibitors for a receptor structure during the preliminary stages of drug 

discovery studies. However, more than 90% of SBVS best ranks compounds do not have the 

expected biological effect at the end of the process. In this context, strategies to increase 

the success rate must be employed to ensure the experiment's success. Here, we introduce 

the HTP SurflexDock, a tool that improves the success rate of SBVS experiments through 

two strategies: First, the ensemble docking protocol enables the simulation of the implicit 

flexibility of the receptor structure. Second, a post-processing steps allows the user to 

rescore promising compounds by expanding the conformational space search or estimating 

the binding free energy through the MM/PBSA protocol. HTP SurflexDock is useful when 

dealing with flexible receptors and when structural information about the receptor contact 

area is insufficient or optimized for a specific ligand type. HTP SurflexDock is freely 

available as a web service or may be downloaded at 

https://htpsurflexdock.biocomp.uenf.br/. 

1. Introduction 

 Structure-based virtual screening (SVBS) is a technique widely used in early-stage drug 

discovery that uses molecular docking and a virtual dataset of compounds to explore the 3D contact 

surface of a drug target and classify the compounds using a scoring function. However, less than 10% 

of the best hits found in SBVS have any activity in in vitro experiments at acceptable concentrations 

[Perola 2006]. In this way, several strategies are employed to optimize the investigation and improve 

its success rate. These include pre-processing steps, such as adding receptor's flexibility, and post-

processing steps to filter out the hits with better chances of success in the subsequent stages of drug 

discovery [Antunes et al. 2015]. 

 Protein flexibility is critical for various biological processes such as signal transduction, 

enzymatic functions, and substrate recognition [Wang et al. 2020]. A protein can undergo significant 

conformational changes upon interaction with a substrate due to induced fit and conformational 

effects [Antunes et al. 2015]. However, one of the most critical challenges for SBVS is to account for 

the flexibility of the receptor when docking with the ligand, as the explicit techniques to account for 

flexibility are computationally intensive [Chaudhury and Gray 2008; Sinko et al. 2013]. In this way, 

rigid docking tools are typically used, not considering the effects of flexibility on protein-ligand 

interactions and leading to problems known as the receptor memory effect. Consequently, the receptor 

recognizes only some types of ligands, and other interesting compounds may not be identified [Feixas 

et al. 2014]. On the other hand, the generation of ensembles of receptor conformations before docking 

allows the experiment to simulate, on some level, the implicit flexibility of the receptor and allows 

better accommodate the ligands on their contact surface [Kolodzik et al. 2018]. This technique, known 

as ensemble docking, uses receptor conformations obtained from molecular simulations or 



  

crystallography to make the SBVS experiment unbiased for a particular type of ligand [Lavecchia 

and Di Giovanni 2013]. 

 In general, the accuracy of the scoring functions is not sufficient for the fine classification of 

the compounds, as the SBVS tools do not always correctly represent the complexity of the interaction 

of the ligand with the receptor. This may favor poses with artifacts such as steric conflicts, malformed 

hydrogen bonds, and other structural problems [Lionta et al. 2014]. Therefore, post-processing steps 

promote the exploration of the active site conformational space by generating new poses or using 

different protocols to estimate the binding free energy of the protein-ligand interaction. Methods such 

as MM/PBSA (Molecular mechanics Poisson-Boltzmann surface area) are commonly used to rescore 

compounds [Wang et al. 2019].  

 The MM/PBSA protocol estimates the relative free energy of binding using an ensemble of 

conformations obtained from the molecular dynamics (MD) of the protein-ligand interaction in an 

aqueous solvent and further calculating: (i) the potential energy change in vacuum (sum of binding 

energies, angular and torsional contributions, Van der Waals interactions and electrostatic energies), 

(ii) the desolvation energy of the components of the system and (iii) the conformational entropy of 

the gas-phase complex [Wang et al. 2018]. The MM/PBSA protocol is widely used for rescoring 

compounds in SBVS experiments because it compromises low computational cost and high accuracy 

[Ren et al. 2020].  

 In this context, we present the HTP SurflexDock, a web tool for performing SBVS 

experiments using the ensemble docking protocol with four conformations of the receptor obtained 

from 5 nanoseconds MD in explicit solvent (https://htpsurflexdock.biocomp.uenf.br/). In addition, it 

includes post-processing phases that increase the conformational search space and allows hit 

rescoring by estimating the binding free energy using the MM/PBSA protocol. 

2. Platform description 

 A typical HTP SurflexDock experiment proceeds as follows: first, the user loads a three-

dimensional structure of the receptor (format RCSB PDB) and a dataset of small molecules to be 

challenged against the receptor (format AutoDock PDBQT). The server then ranks compounds 

according to the ΔG calculated for each conformation of the ensemble and presents the results through 

a user-friendly interface. 

 Based on our previous work [De Almeida Filho and Fernandez 2019], the ensemble docking 

protocol builds the ensemble from the original receptor structure. Another three conformations are 

obtained from five nanoseconds MD using Gromacs 5.1.5 [Abraham et al. 2015]. The MD relaxes 

the receptor by optimizing its interaction with the solvent and allowing it to adopt other 

conformations. The simulation trajectory is submitted to the clusterization protocol, and 

conformations with a maximum binding site RMSD of 0.10 to 0.20 nm are grouped using the 

GROMOS algorithm [Daura et al. 1999]. Then, a representative structure of the three most 

representative groups is added to the receptor ensemble. The pipeline challenges the dataset of 

compounds against each conformation of the ensemble using AutoDock software [Norgan et al. 2011] 

and ADT scripts [Morris et al. 2009]. First, ten poses are calculated for each complex using 2.5x106 

energy inference and the Lamarckian Genetic Algorithm (LGA) [Morris et al. 1998]. Finally, the HTP 

SurflexDock generates a score table containing the ΔG of the best pose of each calculated complex 

(Figure 1). 

 The HTP SurflexDock presents two options for post-processing protocols: First, it allows 

expanding the conformational search space of up to 10 user-defined compounds through a new cycle 

of docking experiment. 

  



  

 Figure 1. Workflow of HTP SurflexDock. (A) The user loads the receptor structure and a library of 
compounds at https://htpsurflexdock.biocomp.uenf.br/. (B) The ensemble docking pipeline is run, 
obtaining 3 receptor conformations from a 5-ns molecular simulation and using the original 
conformation as a control. The compounds are docked into the ensemble conformations. (C) The 
results are presented in the form of a table where the user can visualize the complex or perform 
post-processing tasks. (D) HTP SurflexDock allows exploratory analysis of the conformational space 
through boxplot diagrams and MM /PBSA calculation of the complex. 

 The exploratory of conformational space calculates up to 30 new poses. It allows the user to 

analyze the compounds qualitatively by studying the interactions calculated in the poses using 

AutoDock and ADT script again. Furthermore, the tool estimates the relative free energy of binding 

through MM/PBSA protocol implemented in the software g_mmpbsa [Ren et al. 2020]. The binding 

free energy inference pipeline starts in a pre-processing step, where the topology parameters from the 

Amber99sb force field [Song et al. 2019] for the ligand are obtained by the software ACPYPE 

[Bernardi et al. 2019]. Amber21 [Case et al. 2020] and Openbabel program [O'Boyle et al. 2011] are 

used for the addition of Gasteiger charges [Gasteiger and Marsili 1978]. Then, the Gromacs 5.1.5 

software generates a ten nanosecond MD of the complex. The first seven nanoseconds are considered 

equilibrium phase, and the final three nanoseconds are used by g_mmpbsa to calculate the binding 

free energy components of the complex. In the end, the mmpbsa.py script [Ren et al. 2020] obtains 

the averages of the energy contributions, and a plot of the variation of ΔG against time (ΔΔG) is 

generated through the matplotlib library [Hunter 2007]. 

3. Evaluating the HTP SurflexDock's ensemble docking protocol 

 We evaluated HTP SurflexDock in discriminating active and inactive compounds using a case 

study with human angiotensin-converting enzyme I (ACE), a zinc-dependent metalloprotease that 

converts angiotensin I to angiotensin II, a critical vasoconstrictor [Masuyer et al. 2012]. Therefore, 



  

this enzyme has become a classic target of several drugs for treating cardiovascular diseases and the 

best known of these molecules is the bradykinin potentiating peptides (BPP) analog Captopril 

[Wisnasari et al. 2016; Bateman et al., 2017; Evans et al., 2016]. However, this drug has had many 

adverse effects, so there is a general interest in finding new and safe drugs for this target (Fernandez 

et al., 2004). 

3.1 Methodology 

 In this experiment, the three-dimensional structure for the C-terminal (PDB id 1O86) and N-

terminal (PDB id 5amb) domains of ACE was retrieved from RSCB PDB. AutoModel modeling 

software [De A Filho et al., 2018] was used to complete the regions without structural information of 

both domains. The compound dataset was generated using the DUD/ACE (Database of Useful 

Decoys) [Mysinger et al. 2012], which contains active (ligands) and inactive (decoys) challenging 

compounds. However, eleven thiol ligands were removed from this library because they showed poor 

performance in preliminary experiments. Nine ligands of different chemotypes, obtained from human 

ACE crystallographic data in the PDB, were added to maintain the ligand/decoy ratio in the dataset. 

The final dataset used in the experiments consisted of 1797 decoy molecules and 44 ligands, classified 

as 16 carboxyl compounds, five phosphinic compounds, 17 thiol compounds, and 6 BPPs compounds. 

All selected molecules were converted to pdbqt format using the HTP SurflexDock conversion tool. 

After conversion, the molecules were renamed according to their classification with prefixes 

'ligandxx' and 'decoyxxxx'. 

 The HTP SurflexDock was configured using default parameters to challenge the compounds 

near Glu411 for the C-terminal domain and Glu311 for the N-terminal domain. The open-source 

script roc2py [OEChem 2012] generated ROC graphs to evaluate the results qualitatively. This 

methodology consists of a two-dimensional plot where the y-axis indicates the number of ligands 

found (TPR - True Positive Rate) and the x-axis shows the classification's number of decoys found 

as active (FPR - False Positive Rate).  

 Because only the fraction of the first enriched molecules of an SBVS experiment would be 

used for future laboratory confirmations, these molecules are typically the best-scored ones [Truchon 

and Bayly 2007]. Taking this into account, another critical parameter evaluated in the experiments 

was the "early enrichment", defined as the quantification of the first enriched ligands in the 

experimentation.  

4. Results 

 To ensure representative ensemble in HTP SurflexDock, structural sampling in 5ns 

simulations for the definition of the receptor structures were used. A significant improvement was 

observed in at least one of the conformations of the N-terminal domain (conformation t=4460 ps), in 

which about 4% of the ligands were better enriched than in the control conformation (Figure 2). 

 

Figure 2: Early enrichment of the SBVS using receptor’s conformations from 5 ns molecular 
simulation. (A) ACE C-terminal domain. (B) ACE N-terminal domain. 



  

 Regarding ligand "early enrichment", the experiment with the 5ns ensemble in HTP 

SurflexDock was able to change the enrichment profile by enriching twice as many ligands in the 

t=2182 ps conformation and enriching new phosphinic type ligands in the t=3662 ps conformation in 

the human ACE C-terminal domain (Table I). In the case of the experiment with the N-terminal 

domain, the enrichment profile of the t=4460 ps conformation was changed, and more BPP-type 

ligands were found (Table I). In this context, the expansion of the conformational space generated by 

ensemble docking allowed the number of different ligands enriched between the first 15 compounds 

to increase by 87% when using the 5ns simulation ensemble. 

 Finally, we analyzed different "early enrichment" extracts from both human ACE domains. 

The results showed that the implementation of the ensemble docking methodology allowed an 

increase in initial enrichment of the ligands if compared with the control experiment. Up to 47% more 

compounds were enriched in the first 1/5 of obtained results for the human ACE N-terminal domain 

(Table II). 

 

Table I – Early enrichment of the 15 best dockings using conformations obtained from the 5ns simulation of 
the hACE N-Terminal and C-Terminal domain. 

hACE N-Terminal domain 

Control Conf. t=1048 Conf. t=2182 Conf. t=3662 

Compound 𝚫G Compound 𝚫G Compound 𝚫G Compound 𝚫G 

BPP5_3 -11,1 BPP5_3 -11,3 BPP5a -12,1 BPP3 -11,1 
RX3 -10,5 BPP3 -10,6 RX3 -11,1 ligand_15 -10,3 

ligand_15 -10,5 ligand_15 -10,4 BPP3 -11,1 BPP5a -10,2 
decoys_600 -10,5 BPP5_4 -10 ligand_15 -10,7 BPP5_3 -10 

BPP3 -10,5 ligand_24 -9,92 ligand_24 -10,7 decoys_554 -9,46 
ligand_33 -10,5 RX3 -9,71 BPP5_3 -10,5 RX3 -9,46 
BPP5_2 -10,3 ligand_31 -9,63 ligand_34 -9,91 ligand_23 -9,27 
BPP5a -10,3 decoys_53 -9,6 decoys_564 -9,61 decoys_600 -9,19 

decoys_156 -10,3 decoys_1699 -9,56 ligand_42 -9,6 decoys_534 -9,1 
decoys_534 -10,2 decoys_564 -9,51 decoys_156 -9,57 ligand_42 -8,95 
decoys_1281 -10,2 BPP5a -9,5 ligand_37 -9,35 BPP4 -8,93 
decoys_1321 -10,2 decoys_939 -9,49 BPP5_2 -9,34 decoys_815 -8,87 
decoys_1205 -10,1 BPP5_2 -9,29 decoys_1699 -9,32 decoys_522 -8,83 
decoys_554 -9,92 decoys_165 -9,27 ligand_33 -9,32 decoys_1773 -8,8 

hACE C-Terminal domain 

Control Conf.  t=706 Conf. t=1870 Conf. t=4460 

Compound 𝚫G Compound 𝚫G Compound 𝚫G Compound 𝚫G 

BPP3 -12,3 BPP3 -10,75 RX3 -11,30 BPP5_3 -11,60 

ligand_15 -11,3 RX3 -10,60 ligand_15 -11,10 RX3 -11,40 

RX3 -11,0 ligand_15 -10,42 BPP5_3 -10,90 BPP3 -10,50 

ligand_24 -10,8 ligand_27 -10,00 decoys_338 -9,86 ligand_42 -10,40 

decoys_1574 -10,7 decoys_1270 -9,98 BPP5_2 -9,85 BPP5a -10,30 

decoys_1398 -10,7 decoys_1716 -9,88 decoys_599 -9,84 BPP5_2 -10,30 

BPP4 -10,6 decoys_608 -9,82 BPP3 -9,76 ligand_15 -10,20 

BPP5_3 -10,6 decoys_320 -9,79 ligand_24 -9,71 ligand_23 -9,90 

ligand_34 -10,5 decoys_284 -9,75 ligand_23 -9,69 decoys_1398 -9,80 

decoys_1269 -10,5 decoys_1398 -9,71 decoys_1773 -9,61 decoys_1773 -9,79 

decoys_1270 -10,4 decoys_913 -9,69 decoys_913 -9,53 decoys_338 -9,75 

decoys_284 -10,4 decoys_286 -9,58 decoys_619 -9,50 decoys_619 -9,74 

decoys_1152 -10,4 decoys_619 -9,58 decoys_1270 -9,46 decoys_310 -9,68 

decoys_1320 -10,3 decoys_310 -9,53 decoys_1276 -9,45 decoys_534 -9,65 

decoys_848 -10,3 decoys_613 -9,49 decoys_705 -9,42 decoys_531 -9,64 

 
  



  

 

Table II: Number of ligands enriched by conformation of the ensemble obtained from the 5 ns simulation 

 5. Conclusion 

 Here we introduce HTP SurflexDock, a web server that allows users to perform SBVS 

experiments intuitively with ensemble docking, using a few parameters defining the active site of the 

receptor and general experimental conditions. Since there is no pre-established protocol for ensemble 

docking, we evaluated the effects of the protocol in a challenging case study using the human ACE 

N and C-terminal domains. Our results showed that the pipeline implemented in HTP SurflexDock 

could avoid the receptor "memory effect" caused by the crystallographic data over the rigid docking 

by allowing the enrichment of chemical profiles for different ligands. In addition, ensemble docking 

reduced the number of false positives among the best-detected compounds, making the tool perform 

a more efficient SBVS experiment.  

 Furthermore, the HTP SurflexDock was also employed in a recent study to repurpose antiviral 

agents for SARS-CoV2. Here presented tool tested 3400 molecules from the ZINC15 database 

[Sterling and Irwin 2015] against the SARS-CoV2 main protease (Mpro) and SARS-CoV2 RNA-

dependent RNA polymerase (RdRp) enzymes. A shortcut list of promising compounds was subjected 

to ΔΔG calculation using the MM/PBSA post-processing protocol. SBVS analysis revealed several 

antiretrovirals, antifungal, and antitumor agents that inhibit SARS-CoV 2 enzymes. Moreover, 

Hypericin obtained promising results with a ΔΔG = -22.704 ± 4.008 Kcal/mol, and thus its antiviral 

activity was evaluated in Vero E6 cells incubated with the new coronavirus. The results indicated that 

Hypericin caused a significant reduction of viral RNA in the supernatant at concentrations between 

10 and 100 µM and exhibited a low cytotoxic activity at these concentrations [Matos et al. 2022].  

 These presented features certify the HTP SuflexDock as a valuable resource for SBVS 

experiments with flexible, poorly characterized, or predicted by homology modeling receptors and 

drug repurposing experiments. Users can run entire SBVS experiments in a simple web environment 

without worrying about maintaining a high-performance computer pointing a simple browser to 

https://htpsurflexdock.biocomp.uenf.br/. Nevertheless, complex experiments can be performed on 

local computers using the standalone version of HTP SurflexDock free available for academic users 

at (https://bitbucket.org/jlalmeidaf/htp_4/src/master/). 
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C-Terminal Domain 

Ranked experimental subset 0.55%:first 10 0.8%:first 15 5%:first 92 10%:first 
184 

20%:first 369 

Original structure (Control ) 8 8 16 21* 23* 

Conformation  I     (1048 ps) 7 9 16 18 18 

Conformation  II   (2188 ps)   X 8* 11* 18* 19 20 

Conformation  III  (3662 ps) 7 8 16 18 18 

N-Terminal Domain 

Ranked experimental subset 0.55%:first 10 0.8%:first 15 5%:first 92 10%:first 
184 

20%:first 369 

Original structure (Control ) 4 6 11 16 17 

Conformation  I    (706 ps) 4 4 9 14 16 

Conformation  II   (1870 ps) 7 7 14 14 18 

Conformation  III  (4460 ps)   X 8* 8* 14* 19* 25* 
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