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Abstract.  Support  for  in-silico  scientific  exploration  has  been  focusing  on  the  
research experimental phase. Nevertheless, there is valuable information associated 
to the research endeavor that has been left out of reach of the eScience environment  
and is  mostly  kept  by  scientists  tacitly  or  in  unstructured forms  in  their  desktop  
environment. It concerns a description of the observed phenomenon, the conceptual  
formulation of scientific hypotheses as tentative explanations for it,  as well as the  
models developed to encode these hypotheses. In this paper, we propose to extend  
scientific workflows in order to include such entities as data elements in the eScience  
environment,  enabling  then  for  their  semantic  management.  These  elements  are  
integrated in a three-layered architecture which is illustrated in a case study in the  
modeling and simulation of the human cardiovascular system.

1. Introduction
New  instruments  and  technologies  used  during  in-silico experiments  are  producing  an 

enormous  amount  of  scientific  data.  In  projects  in  which  our  group  is  involved,  we  are 
managing hundreds of terabytes of astronomy data reduced from telescope images of the Dark 
Energy  Survey  Project  (DES)1,  and  tens  of  terabytes  from  simulations  of  the  human 
cardiovascular system produced by the Hemolab simulation environment [Blanco et al. 2000]. 
In scientific endeavors of this magnitude, the scenario of a scientist running ad-hoc programs in 
his/her  desktop  as  a  scientific  platform  is  getting  rare.  In  large-scale  science,  a  High-
Performance Computing (HPC) infrastructure is used to run scientific workflows that prepare 
and  analyze  the  data,  in  most  cases,  using  some  data  partitioning  and  parallel  execution 
strategies  à  la MapReduce  [Dean  and  Ghemawat  2004].  Scientific  workflows  can  also  be 
equipped with provenance management to add reproducibility and traceability to the experiment 
execution, as it is the case of systems like Vistrails [Bavoil et al. 2005], Chiron [Ogasawara et 
al. 2011], and QEF [Porto et. al 2007]. 

An eScience environment with such capabilities supports the scientific experiment life-cycle 
[Mattoso  et  al.  2010].  In  this  paper,  we  contribute  to  the  problem  of  supporting  in-silico 
scientific research by extending its frontiers to the complete scientific research life-cycle, from 
the  observed  phenomenon  to  hypothesis  formulation  to  its  experimental  evaluation  and 
validation against data. In this broader context, the experiment composition and evaluation is 
only one (yet essential) stage of the process. Currenlty, a considerable amount of provenance 
information  associated  to  the  research  endeavor  is  left  out  of  the  reach  of  the  eScience 
environment  and  is  kept  by  scientists  tacitly  or  in  unstructured  forms  in  their  desktop 
environment. In large collaborative projects, such as DES and LSST (Large Synoptic Survey 
Telescope), understanding the phenomenon as seen by the modeler(s) is paramount for people in 
collaboration to interpret their colleagues’ results. Moreover, the process of understanding the 
observed phenomenon itself evolves. It turns out that this wealth of provenance information 
requires a data-oriented approach that should accommodate different elements of the scientific  
research life-cycle into a unified conceptual framework. 

In  this  context,  we  propose  a  three-layered  conceptual  architecture  that  covers:  (i)  the 
observed phenomenon, (ii) the scientific hypotheses, (iii) the models that encode the hypotheses, 
(iv) the scientific workflows that evaluate the hypotheses in experiments, and (v) the data that  
both feeds and is produced by the experiment. We have separated these elements in three layers 

1  DES-Brazil,The Dark Energy Survey Project, Brazil, http://des-brazil.linea.gov.br/.



in order to reflect  the practice of the scientist.  These layers  are the conceptual,  logical  and  
physical, as usual in the theory and practice of databases. They are aimed at addressing the 
representation  and  management  of  the  data  elements  just  mentioned.  The  conceptual  layer 
addresses the phenomenon description and the hypothesis conceptual formulation. The logical  
layer in turn copes with the models that express the hypotheses in some formal language, and/or 
the computational procedure that simulates it.2 Finally, the physical layer deals with the data 
issues and the workflow execution of the experiment. Thus, both the conceptual and logical  
layers compose the extension proposed in this paper. This extension has been conceived in such 
a way that the complete process involved in the scientific endeavor can be accessed and the 
evolution of the phenomenon understanding can be traced back.  We illustrate  the proposed 
architecture in a research aiming at predicting the behaviors of the human cardiovascular system 
through  computational  simulations.  For  brevity,  we  focus  that  illustration  on  the  original 
(extended)  elements  we  have  been  referring  to,  viz.,  the  conceptual  hypotheses  and  their  
associated models.

The remainder of this paper is organized as follows. In Section 2, we discuss related work. 
Section 3 presents the proposed three-layered architecture. Next, in Section 4, the case study in 
the  modeling  and  simulation  of  the  human  cardiovascular  system  illustrates  the  original 
elements of the architecture and their relations. Finally, Section 5 presents our conclusions.

2. Related Work
Back in  the  80's,  the  notion  of  hypothetical  databases  emerged in  the  context  of  database 
management  systems  [Bonner  1990].  They,  however,  were  not  data  models  for  scientific  
hypotheses, but hypothetical states for arbitrary databases. These states were produced by delete 
and insert operations, and queries that could be satisfied on such state. Rather, we are addressing 
the conceptual modeling of scientific hypotheses for data and knowledge engineering. This is in 
fact a barely explored conceptual problem. Under that perspective, we refer in the following to a 
research initiative that has appeared in the last decade in Bioinformatics.

The conceptual framework of HyBrow (Hypothesis Browser) [Racunas et al. 2004] aims at 
providing scientists with a unified eScience infrastructure for both hypothesis formulation and 
evaluation against  observational  data  in  Molecular  Biology.  HyBrow  employs  an  OWL 
ontology  and  application-hardcoded  rules  for  inference  from  facts  stored  in  an  integrated  
knowledge base. HyQue [Callahan et al. 2011] is in turn an adaptation of HyBrow for the linked 
data technologies RDF/SPARQL, which adds to it  semantic interoperability capabilities and 
leverages to some extent its conceptual expressivity.  

HyBrow/HyQue's  hypotheses  are  formalism-specific  assertions  forming  a  set  H in  a 
Knowledge Base (KB). The KB has also rules that model accepted assertions over the same 
universe and experimental data. The KB then can contradict or validate some of the hypothesis 
statements,  leaving  others  as  candidates  for  new  discovery.  As  more  experimental  data  is 
obtained and new rules are inserted, discoveries either accumulate evidence or are contradicted. 
In the latter case, the correlated rules must be identified and eliminated from the theory H. The 
hypotheses in H correlate biological processes (seen as events) are represented in FOL with free 
quantifiers (see an example below). 

HyBrow/HyQue's Hypothesis (from [Callahan et al. 2011]):
e1 (Gal4p induces expression of GAL1) OR

e2 (Gal3p induces expression of GAL2 

e3 AND Gal4p induces expression of GAL7) OR 

e4 (Gal4p induces expression of GAL7 

e5 AND Gal80p inhibits production of Gal4p 

when GAL3 is over-expressed 

e6 AND Gal80p induces expression of GAL7)

We consider the HyBrow/HyQue framework as lying at the logical and physical layers (see  
Section  3).  They  assume  a  formalism-specific  encoding  to  the  hypothesis  statements,  in  a 
conceptual framework meant for both hypothesis formulation and evaluation. Instead, we are 
looking  also  at  the  scientists'  hypotheses  conceptually  and  dealing  with  the  challenge  of 
managing them semantically at the conceptual level. At the logical level, the hypotheses can 

2 For instance, the mathematics of the differential and integral calculus used to express a continuous view of natural phenomena, 
and a scientific programming language used to simulate the phenomenon; or a computer theoretic formalism like Petri Nets to 
describe (say) a message-passing mechanism of protein synthesis.



then be encoded in proper machine-understandable formalism (like in HyBrow) to be evaluated 
in silico at the physical level in a scientific workflow. 

3. The Three-Layered Architecture
As previously mentioned, our proposed architecture comprises three layers, viz., the traditional  
separation in conceptual, logical and physical layers, see Fig. 1. When we speak of the issues to  
be addressed in this architecture, we are always referring to data representation and management 
issues. A preliminary version of data models for the entities (i) Observed Phenomenon, (ii) Sci-
entific Hypothesis, and (iii)  Model (mathematical or computational) have been developed and 
can be found elsewhere [Porto et al. 2008; Porto and Spacappietra 2011]. Those data models are 
being elaborated in such a way that it will be possible to track the conceptual and logical sci -
entific modeling life-cycles. In this paper, we are abstracting from particular data representa-
tions to focusing on how such elements relate to each other in the proposed conceptual architec-
ture for eScience. Thus, scientific hypotheses and models expressing them are abstracted in Sec-
tion 4 as data elements represented, respectively, by variables h1 ,h2 , ... , hn , and m1 , m2 , ... , mn , 
with n∈ℕ . Data management in turn is characterized at the novel conceptual and logical layers  
as semantic management, as illustrated in Section 4.

The conceptual layer comprises a description of the observed phenomenon and its associated  
explanations,  the  scientific  hypotheses.  For  the  purpose  of  this  paper,  the  phenomenon 
description can be understood as being composed of a unique identifier, a set of observables  
(e.g., mathematical variables x, y and z), and an enunciation like “population dynamics”, “blood 
flow in a cardiovascular vessel”, or “genesis of tsunamis”.

A scientific hypothesis is a statement of explanation that must be refutable [Popper 2002]. A 
model  expresses a  scientific  hypothesis  in  some  formal  language  (e.g.,  mathematics).  We 
assume  that  every  (scientific)  model  expresses  exactly  one  hypothesis,  and  formalize  this 
relationship by a function υ :M →H , where M is a set of models, and H is a set of hypotheses. 
Models  embodying  hypotheses  play  then  a  fundamental  role  in  experimental  science  by 
bringing rigor to problem statement and results validation. In the in-silico research, experiments 
support or refute hypotheses through simulations whose results establish a distance between the 
hypothesis and the associated observations.  This allows one to assign quantitative values to 
hypotheses (semantic entities),  bridging then the gap betwen the quantitative and qualitative 
views. Unlike the HyBrow approach, we consider that notion of pragmatics, i.e., that hypotheses 
encoded in models approximate the observed phenomena according to some metrics. Therefore, 
we  define  for  each  hypothesis  the  refutability  property,  which  is  a  continuous  function 
ρ :H →[0, 1] . Notice that a composite function ρ∘ υ:M →[0,1]  then retrieves the refutability 
of  a  model.  This  conceptual  modeling of  scientific  hypotheses  introduces  a  valuable 

Fig. 1: Three-layered conceptual architecture for eScience.



contribution by bridging the gap between qualitative description of the phenomenon domain and 
the corresponding quantitative valuation. 

 At the logical layer the observed phenomenon is represented as a spatio-temporal Process, 
as proposed by Sowa [2000]. On the one hand, the continuous view of phenomena in space-time 
is represented by a set of integral or differential equations that model some Continuous Process. 
On the other hand, a Discrete Process represents the state-transition view of the phenomenon 
simulation, as reproduced in a mathematical/logical discrete-event model or in a computational 
model. A Mathematical Model is eventually transformed to a Computational Model. The idea of 
such an integrated view under the Process rubric is to keep those different elements of the in-
silico research still referring to the studied phenomenon as an anchor to the investigation. At the 
logical layer, models simulate the observed phenomenon. 

Finally, the physical layer deals with the representation and management of the experiment, 
as approached by scientific workflows and their processing data - input data, as well as the data 
produced during the experiment runs and all the provenance data gathered during experiment 
evaluation.  The  physical  layer  is  not  considered  in  detail  in  Fig.  1,  neither  is  it  discussed  
thoroughly in this paper. For an in-depth account of the representation and management issues 
at this layer, one can refer to [Mattoso et al. 2010]. 

By  establishing  those  three  layers  and  their  interfaces,  scientists  have  then  an  explicit 
reference  of  the  hypotheses  formulated,  the  models  expressing  them  and  their  associated 
experiments, all together in the complete scientific life-cycle (see Fig. 2). From the traditional  
experiment point of view, new kinds of provenance information arises concerning models and 
hypotheses.   Interesting queries can be formulated, for example, to retrieve the hypothesis a  
given model expresses,  or what hypotheses are near enough as explanations for the studied 
phenomenon. All this can be quite useful in a collaborative in-silico research. With this purpose, 
the  implementation  of  the  scientific  hypothesis  and  model  data  elements  in  the  semantic 
web/linked  data  technologies  OWL/RDF shall  enlarge  the  potential  of  applicability  of  the 
proposed three-layered architecture in the context of the Linked Data effort, in particular, in the 
emerging community of Linked Science.3 We proceed now to the illustration of the conceptual 
and logical issues through an example of in-silico scientific research which is a representative 
example. 

4. Case Study: Modeling the Human Cardiovascular System
In order to illustrate the data elements appearing in the two novel layers, viz., the conceptual  
and the logical layers, we refer to the modeling and simulation of the human cardiovascular  
system developed at LNCC4,  in support of the medical diagnosis of cardiovascular diseases. 
This example of scientific modeling activity starts with a simplistic representation of the human 
cardiovascular  system,  in  which  the  parts  of  the  system (a  network  of  blood  vessels)  are 
modeled as lumped (non-spatial) physiological components [Liang et al. 2009; Blanco et al.  
2009].  These  components,  the  blood  vessels,  are  seen  by  analogy  as  resistive-capacitive 
electrical circuits, hence the same physical laws (e.g., Ohm's law) hold for them. This is the so-
called  0-D  model,  which  comprises,  mathematically,  ordinary  differential  equations.  The 
cardiovascular system is then modeled as a lumped (closed-loop) dynamic system. We have 
here a hypothesis about how a generic component of the cardiovascular system behaves, viz.,  
that (h1) “A blood vessel behaves as a lumped RC-circuit”, which is expressed by mathematical 
model (m1), as shown in Table 1. Then a computational model (say, a scientific program coded 
in MATLAB) as  a  transformation of (m1)  can  simulate  the observed phenomenon (i.e.,  the 
observed  blood  flow over  the  vessel).  The  computational  model  (m1*)  can  be  linked  to  a 
workflow data element  in order to be run, hence evaluating the hypothesis (h1) it expresses.

3 http://linkedscience.org/.
4 LNCC - National Laboratory for Scientific Computing; cf. the project INCT-MACC at http://macc.lncc.br.

Fig. 2: Flow chart of a complete life-cycle of an in-silico research.



Table 1: Instances of scientific hypotheses and instances of mathematical models that express them. 
The hypotheses lie at the conceptual layer, while the models lie at the logical layer. This table does  
not account for a precise data representation of such data elements.

Hypothesis 
Key

Hypothesis Natural Language Statement Model 
Key

Mathematical Model

h1 “A blood vessel behaves as a lumped RC-circuit”. m1 C j

dP j
dt

=Q j−Q j+1

R jQ j=P j−1−P j

h2 “A blood vessel behaves as a lumped RLC-circuit”. m2 C j

dP j

dt
=Q j−Q j+1

L j
dQ j

dt
+R jQ j=P j−1−P j

h3 “A blood vessel  behaves as  a lumped RC-circuit  
and an external pressure is exerted on it.”

m3 C j

d (P j−P ex)
dt

=Q j−Q j+1

R jQ j=P j−1−P j

h4 “The blood flows radially over the vessel [now, a  
pipe] as a viscous fluid.”

m4 v (r)=
(P j−1−P j)
4Lμ

(R2−r2)

Q j=
π R4

8μ L
(P j−1−P j)

L

h5 “The blood behaves as a viscous fluid.” m5 ρ(∂ v⃗∂ t + v⃗⋅∇ v⃗)=−∇ p+∇⋅T⃗+ϕ

At  this  point,  it  is  worthwhile  recalling  George  Box's  quoting,  the  motto  of  mathematical 
modeling, that “all models are wrong, some are useful.” In fact, the 0-D model is a simplistic 
representation of the cardiovascular system, yet one which is the basis for more sophisticated 
models, and also one that is able to achieve a number of relevant predictions; e.g., to predict 
how the patient's cardiac output and systemic pressure will change over his/her aging, or even 
the calibration itself of anatomical and physiological parameters by taking canonical values of 
an average individual. Now, suppose that after a research life-cycle comprising  the three central 
stages illustrated in Fig. 2, the distance between data produced by the simulation and data that  
has been observed is significant. Additionally, suppose it turns out that a model fine tuning (say, 
parameter recalibration) brings no sensible effect. The scientist might consider in this validation 
stage  that  hypothesis  h1 does  not  seem  to  hold.  In  our  example,  feasible  hypothesis 
reformulations could be (h2) “A blood vessel behaves as a lumped RLC-circuit” and  (h3) “A 
blood vessel behaves as a lumped RC-circuit and an external pressure is exerted on it.” (see 
them associated to their mathematical models in Table 1). While the former considers inertial 
effects inhibiting the vessel wall to get deformed at its resting state, the latter considers the 
effect  of  an external  pressure (e.g.,  due to  breathing) being exerted on the vessel  wall  that  
constrains its deformation. The scientist then can recall his/her observations of the phenomenon 
in order to shed light on his/her hypothesis reformulation.

   Our point w.r.t. integrating both conceptual hypotheses and models as data elements into the 
in-silico environment  is  then  illustrated  clearly  now. Consider  that  data  representations  of 
hypotheses  h1,  h2 and  h3 are  linked  to  their  mathematical/computational  model  data 
representations  m1,  m2 and  m3, which are in turn linked to the results analysis module in the 
physical layer. Then we can provide the scientist with semantic management features to track  
his/her research  likely in a way more efficient than before, outside the eScience environment. 
He/she will be able to query the refutability of his/her hypotheses (like we have mentioned in 
the previous section). Besides, modifications may take place at the logical layer, which are not 
necessarily derived from hypothesis reformulation. A typical activity of this sort, as mentioned 
above, is the so-called model tuning, where the scientist  calibrates the computational model  
parameters without recurring to hypothesis reformulation. 
   Finally, notice that the simplistic modeling step that has been exposed in our example is meant 
to keep as much transparency as possible to the reader. Consider the whole network of blood 



vessels,  which  are  of  different  sort;  e.g.,  in  a  more  refined  view, a  heart  chamber  behaves 
differently than capillaries that compose the human cardiovascular system. This raises in fact a  
non-trivial  challenge  of  semantic  management.  Moreover,  such  a  mathematical  modeling 
problem is actually approached with a multi-scale technique [Blanco et al. 2009], see Fig. 3. 
Lumped 0-D components (Fig. 3 on the left) are coupled to 1-D components (the arterial tree,  
see Fig. 3 on the right) and even 3-D components (small parts of an artery deserving closer  
attention; e.g., the region nearby an aneurism, see Fig. 3 on the top center). In a 1-D perspective,  
the lumped simplification does not hold anymore. The hypothesis in that case is that (h4) “the 
blood flows radially over the vessel [now, a pipe] as a viscous fluid.” (obeying (m4) Poiseuille's 
law). In a 3-D perspective, the tension exerted on the vessel wall can be predicted precisely  
under the hypothesis that (h5) “the blood behaves as a viscous fluid.” (modeled by (m5) the 
Navier-Stokes equations), see Table 1. In case a pathology is under investigation, modifications 
of many sorts are formulated as hypotheses to be tested through modeling and simulation. Fig. 3 
highlights that scientists think over multiple hypotheses and models in an integrated way. Thus, 
linking hypotheses and models as (conceptual and logical data elements) to their workflow data 
elements at the physical layer allows for their semantic management, which could bring to the 
eScience architecture genuine benefits.

5. Conclusions
Modern science is confronted with a data deluge produced by new instruments and computer 
simulations of natural phenomena. In order to support scientists in making sense out of these  
data, eScience research has evolved by focusing on supporting the scientific experimental life-
cycle in-silico. Scientific workflow systems allows scientists to design their experiments and to 
cycle through a validation-tuning experimental life-cycle. 
    In this paper we have proposed an extension to the experimental life-cycle for managing  
hypotheses and models. We argue that support to the  in-silico scientific endeavour could go 
beyond scientific workflows and towards a complete scientific research life-cycle. One which 
includes the investigated phenomenon, the formulated scientific  hypotheses and their related 
models, in addition to the experiments. This new vision of eScience support to the scientific  
research  life-cycle  has  been  materialized  into  an  integrated  three-layered  architecture,  
comprising  a  conceptual,  logical  and  physical  layer,  in  which  the  physical  layer  has  been 
already addressed by off-the-shelf scientific workflow systems. The integration fostered by the 
proposed architecture extends provenance information through the complete scientific research 
life-cycle, supporting collaboration, results interpretation and reproducibility.
   There are many opportunities for future work. We are currently working on the management 

Fig.  3: Schematic diagram and scientific  visualization rendered from 
models of the human cardiovascular system that embody different sci-
entific hypotheses w.r.t. the behavior of blood vessels.



issues regarding the scientific life-cycle in which hypotheses and models evolve, as well as in  
implementing data representations of both hypotheses and models using linked-data standards.
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