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Abstract. Soybean cultivation is one of the principal crops in agricultural pro-
duction in Brazil, moving a relevant agribusiness production chain. However,
there are problems during the production process, involving care from planting,
development to harvesting. In particular, the control of pests such as fungi is
of great relevance to production. Monitoring and decision-making for the pre-
vention and application of fungicides in the sector has become a major focus in
terms of sustainability, productivity, and healthier production for human and an-
imal consumption. Computational approaches have been applied to pest mon-
itoring, however they focus on detecting the phenotype of diseases, when culti-
vars already show signs of infection and require fungicide application. However,
fungi reproduces through living hosts and uses the wind to migrate its spores to
a new host, such as Asian soybean rust. One possibility for early identification,
before the manifestation of the pathology, is to detect the presence of spores
by spore collectors and microscopy slides. But this leads to manual analysis
performed by a specialist, being a time-consuming and tiring process. Deep
Learning approaches can assign greater accuracy when counting spores with
less time, finding patterns and leading to classification. Therefore, this study
presents an evaluation of different deep learning approaches for the automatic
recognition of spores that cause soybean diseases: rust, downy mildew, and
powdery mildew from microscopy slides.
Keywords: Phakopsora pachyrhizi, Microsphaera diffusa, Peronospora man-
shurica, fungal spore detection, deep learning, pattern recognition.

1. Introduction
In 2021, Brazil produced around 134.9 million tons, national soybean production grew
10.8% and its production value reached R$341.7 billion in 2021 [IBGE 2023], indicating
the importance of Brazil as a producer and the economic impact of soybean production.
However, with the opening of new agricultural frontiers and the expansion of soybean cul-
tivation, there has been a rapid spread of the complex of soybean diseases in Brazil. The
occurrence of these diseases influences grain quality and productivity, increasing the cost
of soybean production. Additionally, they lead to a greater use of fungicides in sched-
uled applications, even when they could be avoided. These diseases include soybean rust
(Phakopsora pachyrhizi), powdery mildew (Microsphaera diffusa) and downy mildew
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(Peronospora manshurica). The economic importance of these diseases varies from year
to year and from region to region, mainly depending on the cultivar, the environmental
conditions and the type of technology adopted [Hirakuri 2020].

Asian soybean rust, considered the major disease of the soybean crop, shows
its effects on stems, petioles, pods, and leaves, and can cause yield losses of up to
90% in productivity [Godoy et al. 2016]. At first, small light green or light yellow dots
appear and develop into light brown and increase in size, ranging from 2 mm to 5
mm. The leaves with the fungi turn yellow and fall off. Uredia is present at the bot-
tom of the leaf. It has fungi reproductive structures that form the spores called ure-
dospores [Oliveira et al. 2023]. The Microsphaera diffusa is one of the oldest soybean
diseases, first recorded in 1921. Since then, it has spread throughout the world, in-
cluding Brazil and leading to severe infection in cultivars, which can cause production
losses of 10% to 25%[Igarashi et al. 2020]. The reproduction of this fungus is similar
to Phakopsora pachyrhizi, which uses the wind for their propagation. The powdery
mildew dries out the leaves and falls prematurely because it stops the photosynthesis
[Godoy and Canteri 2004]. Peronospora manshurica causes the downy mildew, like pow-
dery mildew, downy mildew is a soybean disease that develops on the aerial part of the
plant. It is a less aggressive disease, and the damage recorded on crops does not exceed
5% of total production.

Although there are computer vision methodologies for recognizing plants and
their problems, the solutions focus on detecting morphological changes, i.e. af-
ter the diseases have infested the cultivars at a later stage [Brilhador et al. 2013,
Araujo and Peixoto 2019, Pereira et al. 2020, Bevers et al. 2022, Shahoveisi et al. 2023].

Considering that the spread of fungi happens quickly through the wind, to identify
its presence early, before the infection affects, it is necessary to carry out monitoring to
assist in decision-making for the fungicides applications [Singh et al. 2019]. The spores’
early detection makes control more assertive, avoiding unnecessary fungicide applications
[de Oliveira et al. 2020].

Figure 1. Spore Collector [de Oliveira et al. 2020].
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In response to this challenge, the “rust alert” project, which is being developed
by the Paraná Rural Development Institute (IDR-Paraná) in partnership with the Federal
University of Paraná (UTFPR) and Embrapa-Soja. This project comprises making traps
called spore collectors [de Oliveira et al. 2020] available on the properties of farmers who
collaborate with the project, as illustrated in Figure 1. The collectors have glass slides
with adhesive inside, which allow air to pass through and particles in the air to stick to the
slide, as illustrated in Figure 2. Then, professionals with experience need to handle the
slides to perform spore counting [Lei et al. 2018], which requires manually and tediously
going through the slides under the microscope to detect the fungi.

Figure 2. Viewing of the collector slide with the microscope.

The spores automatic identification helps in rapid treatment against the fungus,
reducing losses in plantation fields. This identification avoids the use of fungicides as
prevention when there are no professionals to identify the fungi. Automating counting
reduces human error and the risk of counting the same spore again. Capturing the image of
the collector reduces the need for professionals trained in counting, allowing for increased
scalability and more analyses.

Therefore, considering the lack of computational approaches in the literature for
identifying spores from digital microscopy images and the success of deep learning ap-
proaches in recognizing patterns in images, this study presents an evaluation of deep learn-
ing approaches for recognizing and classifying Phakopsora pachyrhizi, Microsphaera dif-
fusa and Peronospora manshurica spores.

2. Materials and methods

2.1. Materials

In this study, a database containing 720 images was produced in a balanced way. Thus,
comprising 240 spore imagens of each adopted fungi: Phakopsora pachyrhizi, Mi-
crosphaera diffusa and Peronospora manshurica spores. The images are spore micro-
scope samples collected by the Paraná Rural Development Institute (IDR-Paraná). Fig-
ure 3 illustrates the 3 species. The sub-image “a” is the Peronospora manshurica (downy
mildew) spore, sub-image “b” is the Microsphaera diffusa (powdery mildew) spore and
sub-image “c” is the Phakopsora pachyrhizi (Asian soybean rust) spore.
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Figure 3. Example of 64x64 images of the fungi adopted in this study.

The experiment consisted of comparing the models for classifying the 3 types of
species in the dataset, for this the classification models were trained using the IDR-Paraná
dataset, into which it was divided in 72% training, 8% validation and 20% testing. After
training the model, the general accuracy obtained by the model was verified using the test
data.

2.2. Methods

Considering the success of various deep learning architectures in recognizing patterns
and classifying images in different contexts such as Yolo [Im Choi and Tian 2022],
Vgg16 [Simonyan and Zisserman 2014], DenseNet [Huang et al. 2017] and
ResNet [He et al. 2016]. Then, an important question arises as to which architec-
ture can perform best in classifying spores, the focus of this study. Therefore, the main
deep learning architectures available in the literature were adopted and implemented for
evaluation in the detection and classification of Phakopsora pachyrhizi, Microsphaera
diffusa and Peronospora manshurica spores.

The Yolo approach is a popular object detection algorithm in images and there
are different versions of it. The fifth version was made available in 2020 and com-
pared to other object detection methods such as Fast R-CNN it showed superior accuracy
[Im Choi and Tian 2022]. Yolo’s architecture can be divided into three parts: backbone,
neck, and head. The second combines these characteristics, creating three different scales.
The last one performs the detection of objects according to the previously generated scale.
Yolo has a CSPDarknet53 structure with SPP layer in the backbone and PANet in the
neck layer, and has three activation function combinations, being sigmoid, leaky-ReLU
and SiLU [Gong et al. 2022].

In addition, YoloV8 version is similar to the YoloV5 version but with superior per-
formance as it does not have an anchor, that is, it identifies the object through its center as
it does not have an anchor box [Sohan et al. 2024]. By eliminating the bounding box an-
chor, the number of predictions within a box is reduced and thus the process is accelerated.
Combined with this, some convolutional layers were modified and excluded, making the
model more flexible and improving its efficiency. In the backbone of this version, Cross-
Stage Partial Networks (CSP), were replaced by C2f (variation of CSP in addition to di-
viding and combining characteristics as in CSP, C2F adds connections between different
stages of the network). Another issue of this version is the data augmentation included,
called mosaic data augmentation which is a data augmentation technique in which four
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different images are joined together and inserted into the model as input helping the model
learn the objects in different positions and in partial occlusion.

The VGG16 is known as very deep convolutional network, was proposed in 2014
[Simonyan and Zisserman 2014] and is an advanced version of AlexNet with more layers,
with VGG16 it is composed of 16 trainable layers (13 convolutional and 3 fully connected
layers), uses 3x3 convolutional filters with padding and stride of 1. After each set of
convolutional layers, the pooling layer is applied.

The DenseNet121 [Huang et al. 2017] neural network is a fully connected feed
forward neural network. It is characterized by the fact that each layer receives as input the
feature map of all previous layers. Furthermore, the model is grouped into dense blocks,
interspersed with pooling and convolution layers. The dense connectivity of the model
avoids the need for redundant learning. In direct comparison with VGG16, the model has
a smaller number of parameters, even though it is deeper.

The ResNet is a deep residual network, proposed in 2015 [He et al. 2016]. The
ResNet121 is composed of 121 trainable layers. An important difference to other archi-
tectures is that it uses residual blocks with skipped connections, which skip one or more
layers. These facilities allow gradients to pass through the network, facilitating training
and alleviating the problem of disappearing gradients.

In order to assess different deep learning approaches to the identification and clas-
sification of spores, the following were adopted: YoloV5, YoloV8, Vgg16, DenseNet121
and ResNet121. As the number of images available in the dataset were few, the model
parameters were kept, and 2 Dense layers were added with an output dimensionality of
512, and finally a Dense layer was added with an output dimensionality of 3 with Softmax
activation. The adopted parameters for Vgg16, DenseNet121 and ResNet121 are shown
in Table 1.

Table 1. Vgg16, DenseNet121 and ResNet121 adopted parameters.

Parameter Parameter Value
Optimizer Adam

Learning Rate 0.001

Loss function Sparse Categorical Cross entropy

callback Early Stopping

Metric used to Early Stopping loss validation

Regarding the approaches YoloV8 and YoloV5 the adopted parameters are avail-
able in Table 2.

3. Results and Discussions
In order to assess the deep learning approaches, the experiments were performed by adopt-
ing the 720 images (see Sec. ), divided into 518 training images, 144 test images and 58
validation images divided randomly. Traditional assertiveness metrics were adopted, such
as precision, recall and accuracy, which explain the model’s ability to identify spores.
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Table 2. YoloV5, YoloV8 adopted parameters.

Parameter Parameter Value
Optimizer Adam

Deterministic True

Lrf 0.01

Lr0 0.01

Epochs 100

Table 3 shows the results of the adopted deep learning approaches tested with the
same images and 50 epochs for each model. The best results (i.e. classifiers) are high-
lighted in bold. It can be seen that considering the overall accuracy for the three classes of
fungi, the YoloV5 model showed the best result, with an accuracy of 0.79. When consid-
ering accuracy, the Vgg16 model performed best with 0.89 for Asian soybean rust spores
and again YoloV5 with better accuracies of 0.88 and 0.75 for powdery mildew and downy
mildew spores, respectively. On the other hand, when considering recall, the Yolo8 model
showed the best results for all spore classes, indicating its suitability for recovering cor-
rect results. The DenseNet and ResNet models did not show competitive results when
compared to the other deep learning approaches, with a negative highlight for the recall
of only 0.56 achieved by the Resnet for downy mildew spores.

In general, it was possible to see that the YoloV5 and YoloV8 approaches showed
the best results, indicating the suitability of the fungal spore classification adopted in this
study.

Table 3. Assertiveness measurements obtained by deep learning approaches in
the classification of fungal spores.

Model Class Precision Recall Accuracy
YoloV5 Downy Mildew 0.75 0.8

0.79YoloV5 Powdery Mildew 0.88 0.68
YoloV5 Asian soybean rust 0.86 0.91
YoloV8 Downy Mildew 0.65 0.8

0.76YoloV8 Powdery Mildew 0.77 0.95
YoloV8 Asian soybean rust 0.75 0.92

DenseNet121 Downy Mildew 0.67 0.75
0.75DenseNet121 Powdery Mildew 0.84 0.68

DenseNet121 Asian soybean rust 0.76 0.83
Vgg16 Downy Mildew 0.63 0.75

0.72Vgg16 Powdery Mildew 0.71 0.72
Vgg16 Asian soybean rust 0.89 0.7

ResNet121 Downy Mildew 0.67 0.56
0.73ResNet121 Powdery Mildew 0.7 0.87

ResNet121 Asian soybean rust 0.84 0.77
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4. Conclusion

This study presented an evaluation of deep learning models in the classification of fungal
spores that cause damage to cultivars, especially soybeans. Three fungi that cause signifi-
cant damage to soybean cultivars were considered: Phakopsora pachyrhizi: soybean rust,
Microsphaera diffusa: powdery mildew and Peronospora manshurica: downy mildew.

An image set was produced with 720 samples containing 240 images of each of the
spore types in a balanced way. The following deep learning approaches were evaluated:
YoloV5, YoloV8, DeseNet, Vgg16 and ResNet for spore classification. The experiments
were performed in order to evaluate the overall accuracy among all fungus classes and the
precision and recall for each of the spores and approaches evaluated.

It was possible to see that the Yolo5 approach showed better precision results,
while YoloV8 showed better recall results. The Vgg16 approach showed better precision
for Asian soybean rust spores. On the other hand, the DenseNet and ResNet architectures
showed lower results than the other approaches adopted in this study.

In future work, it is suggested that new deep learning approaches be evaluated,
including the new versions of YoloV9 and YoloV10. It is also suggested that the image
set be expanded with more samples of each class and that spores causing other diseases
in cultivars be considered.
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