
A volunteer computing system implemented with peer-to-peer
communication optimized for small and limited environments

Caio Santiago1, Luciano Antonio Digiampietri2

1Bioinformática – Universidade de São Paulo (USP)
05.508-090 – São Paulo – SP – Brazil

2Escola de Artes, Ciências e Humanidades – Universidade de São Paulo (USP)
03.828-000 – São Paulo – SP – Brazil

{caio.santiago,digiampietri}@usp.br

Abstract
The computational needs of scientific experiments often require powerful computers. One
alternative way to obtain this processing power is taking advantage of the idle processing
of personal computers as volunteers. This technique is known as volunteer computing
and has great potential in helping scientists. However, there are several issues which can
reduce the efficiency of this approach when applied to complex scientific experiments,
such as, the ones with long processing time, very large input or output data, etc. In order
to face these challenges, we designed a volunteer computing system based on peer-to-peer
communication. When compared with the local execution of activities and traditional
volunteer computing, the execution time was improved and, in some cases, there was also
a reduction of the server upload bandwidth use.

1. Introduction
The computational requirements of scientific experiments often demand powerful com-
puters, which are usually expensive and, probably, they will be idle part of the time [Acharya
et al. 1997]. On the other hand, the advance of the personal computers, with multi-core
CPUs and GPUs, usually take care easily of the users’ needs. Thus, there is a scenario
with personal computers idle at part of the time and with scientific computers overloaded
in specific moments, during the execution of scientific experiments.

Scientific experiments, in several cases, are organized as bag-of-tasks [Kwan and
Jogesh 2010] or scientific workflows [Medeiros et al. 1996]. Bag-of-tasks are composed
of a set of completely independent tasks, what is very different from workflows where a
task needs to wait for the conclusion of another task. Both, typically, require huge compu-
tational power and a way to obtain it is the use of several personal computers, for example,
desktop grids [Kondo et al. 2007,Anderson 2004] or volunteer computing [Anderson and
Fedak 2006].

Volunteer computing (VC) projects take idle resources from donors: the tasks are
sent to volunteers (in general using the Internet), and they send the results back to a server.
This approach may provide a lot of computational power [Anderson 2004], but in scien-
tific experiments, there are many issues which can turn this approach inefficient, such as
long processing tasks [Dethier et al. 2008], great volumes of data to be transferred [Duan
et al. 2012] or instability in volunteer computers [Dias et al. 2010]. The majority of these
issues are related to the low-speed communication with donors across the Internet.

In order to solve these issues, some works proposed the use of peer-to-peer (P2P)
concepts [Majithia et al. 2004, Zhao et al. 2009] in workflow execution using volunteer
computing. This is a dynamic approach and it is able to deal, for example, with hetero-
geneous environments and faults. However, the majority of the research using P2P in this
field aims to create huge and scalable networks. In this work we propose a different ap-
proach, dealing with small networks, composed of heterogeneous participants, and with
bandwidth limited to speeds similar to the average speed on the Internet. However, it
is worth highlighting that P2P communication makes more sense when the data are more
frequently reused. Thus, this approach is preferable for experiments with dependent tasks,
different from many approaches [Majithia et al. 2004, Gentzsch et al. 2013] in this area
that work with bag-of-tasks (sets of independent tasks).

This paper is organized as follows. Section 2 presents related work. Section 3
describes the proposed solution. Section 4 contains the framework evaluation. The results
are presented in Section 5. Section 6 presents the final remarks and future work.

2. Related Work
Some works are based only on a server (acting like the source of the tasks) and clients
(the volunteers of the system), such as BOINC [Anderson 2004]. However, there are
some systems that have others participants, they are not servers or volunteers, that are
responsible for the communication among the participants.

Murata et al. 2008 present a work based on BOINC, where the volunteers are
clustered in small groups (all of them are disjoint sets). The BOINC continues as the
unique server, but each group is responsible to balance by itself. The same was proposed
by Wen Dou et al. 2003, using instead of groups, random neighborhood relations.

The works that use intermediate participants in the communication can be divided
into two main approaches: trees and directed acyclic graphs (DAG). In the tree-based
approaches, the server is the root, the volunteers are, typically, the leaves, and the others
are known as supertrees. The tasks travel from the root to the leaves, using decisions taken
in each step. The decision could be based on probabilistic models [Kwan and Jogesh
2010] or other factors, such as reputation [Rius et al. 2012].

Mastroianni [Mastroianni et al. 2009] adopted a simpler strategy (from the sched-
uler algorithm point of view), but with more elements. The volunteers (workers) request
tasks to the super-peers and the super-peers request them to the Data Cachers. The Data
Cachers receive tasks from the Job Manager. The workers also have to request the input
data directly from the Data Source, which receives data from the Job Manager. At last,
workers send their results to Job Manager.

The works cited do not consider the data transfer costs because they deal with
high-speed communication grids or small tasks. In the other cases, the transfer cost is
very relevant.

3. Developed Solution
The development of this work was based on an extension [Digiampietri et al. 2014b] of the
Workflow Management System (WfMS) called WOODSS (A Spatial Decision Support
System based on Workflows) [Seffino et al. 1999], an open source system written in Java
extended in this project to deal with P2P communication.

Based on the initial structure of the WfMS and on the extensions developed, a
scheduling algorithm (Algorithm 1) that applies P2P techniques was specified and imple-
mented. This algorithm runs on volunteer computers. The aim is to make the volunteers
more proactive, i.e., they prepare themselves (downloading inputs) to the next tasks and
send inputs to neighbors while they are processing a task. The main role of the server is
to respond the volunteers’ requests. Algorithm 1 works as follows. Each volunteer estab-
lishes a connection with the server in order to obtain information about others volunteers
and tasks. After this, the volunteer requests a list of neighbors. With this information,
the volunteer will send and receive data. Then the volunteer requests a list of “schematic
objects” which are a simplified representation of the workflow that contains only tasks’
relationships and inputs’ identifications.

Connect to the server;
objs← Request schematic objects;
Priority queue q← Create priority queue with objs;
while q is not empty do

Object obj ← Choose best task(q);
Download inputs not downloaded yet of obj;
Alert serve about the execution start of obj;
if obj is able to execute then

Task a← Download task(obj);
Start background thread;
Execute a;
Stop background thread;
Send result;
Mark result as a parameter not confirmed;

Algorithm 1: Scheduling algorithm that apply P2P techniques – Working in the
volunteer computers

Then the algorithm decides what task will be processed and what task will be
downloaded, with the criteria defined in the rules of the priority queue, based on: Select
first tasks that do not depend on other not yet executed ones; the number of parameters;
and the number of parameters already downloaded. When a volunteer chooses an input
he asks the neighbors if they have it. If none of them have the desired input, it will
be downloaded entirely from the server, in the other case, the data is downloaded from
the server and the neighbors. Once there is a task ready, the processing is started and
a background thread is also started. The background thread is similar to the process to
choose a task, with the difference of do not download the task by itself, downloading only
parameters of future tasks. This algorithm was designed specifically for small networks.
For larger networks, a more complex algorithm with a more robust coordination strategy
is necessary.

4. Evaluation
An infrastructure was implemented to measure the performance of the developed solution,
which contains two test cases to evaluate three scheduling approaches. In order to do this,
four computers were used. The computers’ hardware and operating system specifications
are presented in Table 1.

Table 1. Features of the computers used.
Processor Clock Memory O.S.
1 Intel R©Core i5-3230M 4x3.20 GHz 8 GB Ubuntu 14.04
2 Intel R©Core i3-350M 4x2.26 GHz 4 GB Ubuntu 14.04
3 Intel R©Pentium T3400 2x2.26 GHz 3 GB Ubuntu 12.04
4 Intel R©Core 2 Duo T5750 2x2.00 GHz 2 GB Ubuntu 12.04

In order to simulate the real world connections, all bandwidths were limited via
software. We used the average bandwidth connection, measured in Brazil (download at
2.4 Mbps) [Akamai 2013]. The upload bandwidth was considered as 10% of the download
bandwidth.

All test cases were compared using two different systems (the traditional VC sys-
tem and the proposed solution using P2P), based on the developed extension of WOODSS
(with three different scheduling approaches). Both used the Computer 4 as the server and
the others as volunteers. Also was tested the scenario with and without redundancy re-
quired, i.e., all results are confirmed for more than a volunteer to be accepted. The next
subsection describes the two test cases used. Each case was performed three times and all
presented results correspond to average values.

4.1. Test Case of Social Network Analysis

The first test case was planned to show the performance of the algorithm in a real area
of knowledge. We chose a test case based on a workflow of social network analysis [Di-
giampietri et al. 2014a, Digiampietri et al. 2015]. This test case has approximately 20
high dependent tasks, alternating between light and heavy loads. The data size alternated
too, between 20KB and 5MB.

4.2. Test Case of Toy Examples

We create another test case based on structures described by Bharathi et al. 2008. These
examples allow a detailed analysis of the strengths and weaknesses of the proposed ap-
proach. Bharathi defined that there are four basic structures for workflows, and the com-
binations of these structures allow the creation of any complex workflows. The structures
are: Data Aggregation (DA), Data Distribution (DD), Data Redistribution (DR), and
Pipeline (P).

Each test case was limited to a single type of structure, with the same shape and
the same number of tasks (four tasks DA and DD, seven tasks for DR and three for P), but
independent from each other. The tests are composed of 10 structures (i.e., a workflow
with ten copies of the same structure, but each copy was able to run independently from
the others). The intention is to verify the impact when the volunteer has, or not, many
tasks to be chosen.

The tasks from this case are all of them toy examples. All the tasks process the
classic problem 3n + 1to the interval from 1 to 5.108. Therefore, there will be a runtime
variation in the execution of each individual task caused only by differences in the per-
formance of the computers. Furthermore, the input and output data were defined with
constant size (it is important to highlight the selected problem need only a number as
input and a boolean as output, but, to serve the purposes of this evaluation, we introduced
an input and output parameter with constant size).

5. Results
This section describes the results from each test case.

5.1. Test Case of Social Network Analysis
The results from the application of P2P technique in the Social Network Analysis test
case were very positive. The developed solution (P2P) was faster than the others (up to
1,11 of speedup) and the time spent only transferring date was smaller than the traditional
VC approach. Table 2 presents these results.

Table 2. Execution and transfer time from the test case of social network analysis

Execution Run Time Speedup Transfer Time
Without

Redundancy
VC 4:57:00 1.11 0:28:19
P2P 4:27:45 0:19:48

With
Redundancy

VC 8:33:30 1.04 1:05:28
P2P 8:15:02 0:29:14

There are two main reasons to explain the improvement in the speedup. The first
one is that the execution of the background thread did not increase runtime. It was ob-
served that the volunteers have less variation in processing since the time between one
task and the next was smaller than the traditional VC system. The second reason is the
proactive behavior of the volunteers in preparing tasks to be processed before they are
really necessary and, therefore, reducing the time expended exclusively with the inputs
download. On average, the time spent with transfer corresponds to 9.5% (and 12.7% with
redundancy) of the total execution time in the traditional volunteer computing system, and
in the developed solution corresponds to 7.9% (and 5.9% with redundancy).

The volunteers get more parameters than they really need (Table 3). It happens
because, when a volunteer is choosing the next parameter to be downloaded, it does not
know yet if he will really execute the respective task. Between the moment of the down-
load of the parameters and the execution, the task could be concluded by other volunteer
or just could have enough volunteers processing the task.

Table 3. Data transferred by each volunteer in MBs on the social network analysis (Down-
load - D.; Upload - U.)

Execution Server Volunt. 1 Volunt. 2 Volunt. 3
U. D. U. D. U. D. U. D.

With
Redundancy

VC 75.54 15.01 4.14 31.63 5.59 25.04 5.66 23.21
P2P 115.74 17.92 6.30 38.29 6.74 37.70 5.00 38.82

Without
Redundancy

VC 153.31 30.18 9.41 64.15 11.26 54.65 10.22 38.38
P2P 99.39 31.33 7.12 23.71 14.76 42.62 10.17 29.85

5.2. Test Case of Toy Examples
In the cases with the toy examples structures (equals and independents), the results were
more promising. This kind of test help to illustrate the behavior of the system imagining
the execution of complex workflows.

The volunteer computing with P2P was faster than the traditional VC (Table 4).
The improvements in execution time were significant, in both cases: with or without
redundancy. The processing time of the two solutions proves that the P2P approach has a
speed increase between 1.14 and 1.33 (and with redundancy between 1.22 and 1.33).

Table 4. Time of runtime/transfer of the test case with toy examples
Without Redundancy With Redundancy

Execution
Run
Time Speedup

Transfer
Time

Run
Time Speedup

Transfer
Time

Data
Aggregation

VC 3:09:50 1.33 0:57:55 7:17:01 1.23 1:18:55
P2P 2:22:37 0:21:53 5:56:38 0:36:51

Data
Distribution

VC 2:51:00 1.14 0:41:37 6:58:02 1.33 1:55:24
P2P 2:29:13 0:20:04 5:13:22 0:37:58

Data
Redistribution

VC 5:04:07 1.20 1:25:21 11:14:16 1.28 2:54:57
P2P 4:12:43 0:31:49 8:44:02 1:01:52

Pipeline VC 2:20:37 1.30 0:33:24 5:13:39 1.22 1:08:03
P2P 1:48:28 0:15:09 4:15:22 0:28:53

The time spent exclusively with data transfers was reduced at least in the half in
almost all cases. The volunteers (from the volunteer computing with P2P) expended most
of the transfer time sending results, because the majority of the tasks did not spend extra
time downloading parameters (they were downloaded in the background thread), but the
upload of results is an activity without background threads (in order to optimize the total
execution time).

Taking into consideration the transfer issues, the results were very positive, which
is different from the ones achieved in the social network analysis cases. Table 5 shows
the application of P2P obtained results better than the traditional volunteer computing,
with or without redundancy. In some cases, the server did not download more data than in
the traditional computing approach. It creates a situation in which the server downloaded
more data than uploaded. Receiving more data than sending is typically considered a very
positive thing in many real scenarios (for example, most of the Internet providers provide
a much higher download rate than the upload one), favoring the proposed approach again.

The difference of this test case with the social network analysis one is due to the
difference of output size of the tasks. In this case, the inputs and outputs have the same
size, but in social network analysis case, the size of the first task input was bigger than the
output of any task.

Table 5. Data transferred by each volunteer in MBs on test case with toy examples (Down-
load - D.; Upload - U.)

Without Redundancy With Redundancy

Execution Server Volunt. 1 Volunt. 2 Volunt. 3 Server Volunt. 1 Volunt. 2 Volunt. 3
U. D. U. D. U. D. U. D. U. D. U. D. U. D. U. D.

Data
Aggregation

VC 120.68 82.38 37.27 60.17 25.66 30.57 20.74 34.10 243.28 167.59 75.72 113.37 49.73 70.50 43.52 66.35
P2P 75.92 85.04 40.20 18.73 22.98 26.14 16.49 26.22 80.29 165.71 65.30 20.80 44.60 23.73 44.99 31.59

Data
Distribution

VC 84.64 84.28 37.48 37.57 25.72 26.63 18.37 19.14 168.12 165.18 76.21 75.33 46.86 47.34 41.01 44.19
P2P 33.97 83.37 38.37 11.16 25.41 13.00 18.31 8.66 35.77 164.07 69.75 10.32 46.21 11.90 42.00 11.75

Data
Redistribution

VC 185.21 147.01 62.49 92.37 44.27 43.99 36.20 45.41 372.88 293.27 132.15 168.38 81.50 98.83 71.88 101.33
P2P 71.02 143.72 63.14 19.98 42.48 24.51 34.86 27.28 86.46 288.25 127.12 28.60 80.16 23.84 70.74 31.54

Pipeline VC 61.79 61.29 26.85 26.75 18.91 19.41 14.21 15.25 121.99 124.28 55.21 54.73 33.55 33.93 32.48 34.27
P2P 28.13 59.52 30.32 8.36 14.46 8.57 14.35 10.51 26.21 123.21 58.20 7.97 35.74 8.24 26.36 9.40

6. Final Remarks and Future Work

In this work, we presented an alternative solution to the problem of executing scientific
workflows in a distributed way, in small networks. It combines the use of volunteer com-
puting with peer-to-peer techniques. The current approach is not designed to deal with
big networks because the communication process is not scalable. The comparison of the
proposed approach with local execution of tasks and the traditional volunteer computing

showed promising results. The developed solution was tested with two cases: the first
is a real case of social network analysis and the second is a test case with toy examples
(created considering the basic workflow structures). In both cases, the developed solu-
tion obtained positive results to reduce the total run time and the bandwidth needs of the
server (except in one specific case). The results are more expressive when considering the
scenarios which require redundancy of task execution. Among the main contributions,
we highlight the algorithm presented in Section 3. It corresponds to improvements in
the execution time of scientific experiments for small networks and with limited band-
width.Another contribution of this approach is that a volunteer can help the execution of
the workflows not only running tasks but also helping in the sharing of input data.

As future work, we intend to improve the volunteer communication. We also in-
tend to make the scheduling algorithm able to work with massive quantities of volunteers.
Finally, we will improve the algorithm with a robust fault tolerance mechanism.

Acknowledgment
The work presented in this paper was partially funded by CAPES, CNPq, and FAPESP.

References
Acharya, A., Edjlali, G., and Saltz, J. (1997). The utility of exploiting idle worksta-

tions for parallel computation. ACM SIGMETRICS Performance Evaluation Review,
25(1):225–234.

Akamai (2013). The state of the internet. Technical Report Vol 6, Num 2, Akamai Faster
Forward.

Anderson, D. (2004). BOINC: a system for public-resource computing and storage. In
Fifth IEEE/ACM International Workshop on Grid Computing, pages 4–10.

Anderson, D. P. and Fedak, G. (2006). The Computational and Storage Potential of Vol-
unteer Computing. In Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE
International Symposium on, volume 1, pages 73–80.

Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.-H., and Vahi, K. (2008).
Characterization of scientific workflows. In 2008 Third Workshop on Workflows in
Support of Large-Scale Science, pages 1–10. IEEE.

Dethier, G., Briquet, C., Marchot, P., and de Marneffe, P.-A. (2008). LBG-SQUARE
Fault-Tolerant, Locality-Aware Co-Allocation in P2P Grids. In 2008 Ninth Interna-
tional Conference on Parallel and Distributed Computing, Applications and Technolo-
gies, pages 252–258. IEEE.

Dias, J., Ogasawara, E., de Oliveira, D., Pacitti, E., and Mattoso, M. (2010). Improv-
ing Many-Task computing in scientific workflows using P2P techniques. In 2010 3rd
Workshop on Many-Task Computing on Grids and Supercomputers, pages 1–10. IEEE.

Digiampietri, L., Alves, C., Trucolo, C., and Oliveira, R. (2014a). Análise da rede dos
doutores que atuam em computação no brasil. In CSBC-BraSNAM 2014.

Digiampietri, L., de Jsus Prez-Alczar, J., Santiago, C., Oliveira, G., Khouri, A., and
Arajo, J. (2014b). A framework for automatic composition of scientific experiments:
Achievements, lessons learned and challenges. In VIII Brazilian e-Science Workshop.

Digiampietri, L. A., Maruyama, W. T., Santiago, C. R. N., and da Silva Lima, J. J. (2015).
Um Sistema de Predio de Relacionamentos em Redes Sociais. In Simpsio Brasileiro
de Sistemas de Informao (SBSI 2015), pages 139–146.

Duan, K., Padget, J., Kim, H. A., and Hosobe, H. (2012). Composition of engineer-
ing web services with universal distributed data-flows framework based on ROA. In
Proceedings of the Third International Workshop on RESTful Design - WS-REST ’12,
page 41, New York, New York, USA. ACM Press.

Gentzsch, W., Grandinetti, L., Joubert, G., Ricci, L., Baraglia, R., Ghafarian, T., Deldari,
H., Javadi, B., Yaghmaee, M. H., and Buyya, R. (2013). CycloidGrid: A proximity-
aware P2P-based resource discovery architecture in volunteer computing systems. Fu-
ture Generation Computer Systems, 29(6):1583–1595.

Kondo, D., Fedak, G., Cappello, F., Chien, A. A., and Casanova, H. (2007). Character-
izing resource availability in enterprise desktop grids. Future Generation Computer
Systems, 23(7):888–903.

Kwan, S. K. and Jogesh, K. M. (2010). Bag-of-Tasks applications scheduling on volun-
teer desktop grids with adaptive information dissemination. In IEEE Local Computer
Network Conference, pages 544–551. IEEE.

Majithia, S., Shields, M., Taylor, I., and Wang, I. (2004). Triana: a graphical Web service
composition and execution toolkit. In Proceedings. IEEE International Conference on
Web Services, 2004., pages 514–521. IEEE.

Mastroianni, C., Cozza, P., Talia, D., Kelley, I., and Taylor, I. (2009). A scalable super-
peer approach for public scientific computation. Future Generation Computer Systems,
25(3):213–223.

Medeiros, J. W., Weske, M., Vossen, G., and Bauzer, C. (1996). Scientific workflow
systems. NSF Workshop on Workflow and Process Automation: State-of-the-art and
Future Directions.

Murata, Y., Inaba, T., Takizawa, H., and Kobayashi, H. (2008). Implementation and
evaluation of a distributed and cooperative load-balancing mechanism for dependable
volunteer computing. In 2008 IEEE International Conference on Dependable Systems
and Networks With FTCS and DCC (DSN), pages 316–325. IEEE.

Rius, J., Estrada, S., Cores, F., and Solsona, F. (2012). Incentive mechanism for schedul-
ing jobs in a peer-to-peer computing system. Simulation Modelling Practice and The-
ory, 25:36–55.

Seffino, L., Medeiros, C., Rocha, J., and Yi, B. (1999). WOODSS - A Spatial Decision
Support System based on Workflows. Decision Support Systems, 27(1-2):105–123.

Wen Dou, Yan Jia, Huai Ming Wang, Wen Qiang Song, and Peng Zou (2003). A P2P
approach for global computing. In Proceedings International Parallel and Distributed
Processing Symposium, page 6. IEEE Comput. Soc.

Zhao, Z., Yang, F., and Xu, Y. (2009). PPVC: A P2P volunteer computing system. In 2009
2nd IEEE International Conference on Computer Science and Information Technology,
pages 51–55. IEEE.

