
Assessing the Impact of Supporting Information on the
Scheduling of Scientific Workflows on Clouds

Eduardo Cotrin Teixeira1, Daniel Cordeiro2, Kelly Rosa Braghetto3

1Universidade Tecnológica Federal do Paraná (UTFPR)
Campus Cornélio Procópio – PR – Brazil

2Escola de Artes, Ciências e Humanidades
3Departamento de Ciência da Computação - Instituto de Matemática e Estatística

Universidade de São Paulo (USP) – SP – Brazil

cotrin@utfpr.edu.br, daniel.cordeiro@usp.br, kellyrb@ime.usp.br

Abstract. Executing scientific workflows in high-performance cloud computing
platforms requires the use of scheduling algorithms that allow workflows execu-
tion as fast as possible, while minimizing the monetary cost of such executions.
In this work we study how the use of supporting information can offer guidance
to scheduling algorithms, helping them to devise more efficient execution plans
in terms of the total execution time (makespan) and the total monetary cost.
Using two large-scale scientific workflows, our experiments showed that simple
modifications on a classical scheduling algorithm (HEFT), in conjunction with
the appropriate supporting information, could reduce the monetary cost of an
execution in up to 59% and reduce the makespan in up to 8.6%.

1. Introduction
Cloud computing platforms are a viable alternative for running scientific workflows.
However, the scheduling on this type of platform generally must consider specific con-
straints such as a limited budget and the type of computational resources required for
the execution. To design effective scheduling algorithms under such constraints that will
ensure efficient workflow executions, one must rely on supporting information, such as
estimated duration of workflow activities or execution time and cost constraints.

This work explores the use of supporting information that can be added to scien-
tific workflow models to support their scheduling and execution on clouds. To assess the
impact of use of supporting information, we performed experiments with large-scale, real
scientific workflows executed through the workflow management system (WfMS) Pega-
sus [Deelman et al. 2009]. To be able to consider the supporting information associated
to the workflows in the scheduling phase, we modified a classical scheduling algorithm
(HEFT) [Topcuouglu et al. 2002] existent in Pegasus to implement two new ones. The
first algorithm minimizes the workflow total execution time (makespan), while the sec-
ond minimizes the total monetary cost to execute the workflow in the cloud computing
under a deadline constraint. In the experiments, we observed a reduction in the monetary
cost of the workflow execution in the cloud of up to 59% and a reduction in the makespan
of up to 8.6%, when compared to the scheduling with no supporting information available.

2. Basic Definitions
A scientific workflow is the automation of a scientific experiment or process, expressed
in terms of the activities and their interdependencies [Cuevas-Vicenttin et al. 2012]. Sci-

entific workflow models can be expressed as Directed Acyclic Graphs (DAGs), where
each node represents an activity and each directed edge represents a precedence relation
between two activities. A scheduling algorithm uses this information to choose, for each
activity, the resource and execution time that optimizes a specific objective function.

The essential information required to schedule and execute a workflow is: de-
scription of the computational resources available for the execution, scheduling objective
to be optimized and specification of the activities with their precedence relations (i.e., the
workflow DAG). The specification of the activities includes the procedure to be performed
(program, script, service, etc.), and the parameters required for the execution (including
input and output data). Any additional information related to the workflow or to the exe-
cution environment can be considered a supporting information for the scheduling.

3. Experimental Evaluation of the Supporting Information Impact

Support information impact on scheduling and execution of scientific workflows on cloud
was evaluated using InterNuvem1, a pay-per-use academic IaaS cloud platform. Ten vir-
tual machines with Ubuntu 12.04 operating system were used, namely, 4 Standard VMs
(2 CPUs and 4GB RAM - R$ 0.112/h), 3 Advanced VMs (4 CPUs and 8GB RAM - R$
0.202/h) and 3 High Performance VMs (8 CPUs and 32 GB RAM - R$ 0.542/h). We
used the WfMS Pegasus version 4.5.0 to manage the execution of two large-scale sci-
entific workflows — Montage (four instances, with degrees 0.5, 1.0, 2.0, and 4.0) and
Epigenomics (two instances, using TAQ and HEP datasets) [Juve et al. 2013].

We consider the scheduling of scientific workflows as a bicriteria optimization
problem, where the performance of the workflow execution is related to two different (and
somehow contradictory) performance objectives: the makespan (finishing time of the last
activity) and the monetary cost of execution. To schedule and execute the workflow in-
stances considering supporting information, we developed and evaluated two scheduling
algorithms: HEFTData and HEFTDeadline.

3.1. HEFTData

HEFT (Heterogeneous Earliest-Finish-Time) [Topcuouglu et al. 2002] is an algorithm for
scheduling dependent activities into heterogeneous machines that minimizes makespan.
HEFT assigns to each activity a rank (i.e., the expected distance from the end of the exe-
cution) defined as rank(ni) = wi +maxnj∈succ(ni)(ci,j + rank(nj)), where ni represents
the ith activity, wi is an average computation cost of activity i among all the resource
types, succ(ni) is the set of all activities that immediately depend on activity ni, and ci,j
is the average communication cost from activity ni to nj considering all pairs of machines
types. After that, HEFT assigns the prioritized activities (in descending order of rank) to
the machines. Pegasus’ HEFT implementation considers only the activity’s expected ex-
ecution time, ignoring communication time. For workflows with large volumes of data,
data transfer times may actually exceed the activity durations.

We have implemented in Pegasus a new version of the HEFT algorithm, called
HEFTData, which considers supporting information about input data volume, besides the
activity estimated duration. HEFTData works similarly to HEFT, except that tasks’ rank

1InterNuvem: https://internuvem.usp.br/

0,5 1 2 4

100

1000

10000

100000

Makespan - Montage

With no support
information

With estimated
duration

With data volume

With data volume
and duration

Degree

S
ec

on
d

s
(L

og
ar

itm
ic

 S
ca

le
)

TAQ HEP

100

1000

10000

100000

Makespan - Epigenomics

With no support
information

With estimated
duration

With data volume

With data volume
and duration

Input Data

S
ec

on
d

s
(L

og
ar

itm
ic

 S
ca

le
)

Figure 1. Average makespan for Montage and Epigenomics.

and expected completion time also consider data transfer times. To evaluate HEFTData,
additional supporting information was needed: the estimated average duration of each
activity on each type of VM used in the experiments (measured with at least 20 executions
in each type of VM) and the volume of data to be transferred between the activities, to
calculate the data transfer times. All supporting information was defined as part of the
workflow model itself and was determined for each edge in the workflow DAG.

3.2. HEFTDeadline

Monetary cost is an important issue to execute workflows on clouds. Virtual machines
may have different prices depending on their configuration, so the choices the scheduler
makes have a direct impact on the cost of the execution. On the one hand, faster machines
tend to be more expensive, and algorithms like HEFT tend to use more of this type of
machine to minimize the makespan. On the other hand, if the scheduler uses cheaper
machines, the workflow execution can take more time than the desired by the scientist.
HEFTDeadline was designed to prioritize the execution of workflow activities in ma-
chines that provide the lowest monetary cost, considering as a constraint the supporting
information deadline, that must be defined by the scientist for the workflow.

Activities and ranks are computed as in HEFTData. However, when mapping the
activities to virtual machines, HEFTDeadline considers only suitable machines resulting
on the cheapest execution costs, considering estimated duration of the activity execution
multiplied by the price per use time of the machine. In this way, a more expensive ma-
chine can be selected if the cost of the activity execution becomes lower due to a shorter
estimated duration in this machine. The execution cost also considers that a machine can
have multiple execution nodes (e.g., multiple cores or hyper-threading capabilities). If a
VM is allocated to an activity, it will be fully billed regardless of how many of its nodes
are actually used. Therefore, an activity mapped to an execution node only has a cost if its
completion time is greater than the latest completion time of the activities mapped to the
other execution nodes of the same VM. The scheduler will not allocate a new VM while
execution nodes on active VMs are still available and are more cost effective.

4. Results and Conclusion

Each instance was executed at least 8 times for each scheduler. The results were evaluated
in terms of makespan (total duration in seconds) and monetary cost. Figure 1 shows the
average makespan obtained using HEFTData and four different configurations of support-
ing information: (i) using no information, (ii) using only the estimated activity durations,

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Resource Usage by Type

0,5 1 2 4 TAQ HEP

high performance

advanced

standard

N
o
 i
n
fo

D
u
ra

ti
o
n

A
ll

V
o
lu

m
e

N
o
 i
n
fo

D
u
ra

ti
o
n

A
ll

V
o
lu

m
e

N
o
 i
n
fo

D
u
ra

ti
o
n

A
ll

V
o
lu

m
e

N
o
 i
n
fo

D
u
ra

ti
o
n

A
ll

V
o
lu

m
e

N
o
 i
n
fo

D
u
ra

ti
o
n

A
ll

V
o
lu

m
e

N
o
 i
n
fo

D
u
ra

ti
o
n

A
ll

V
o
lu

m
e

Figure 2. Average distribution of the virtual machines by type.

Table 1. Average monetary costs (in R$) using HEFTDeadline.
HEFTData HEFTDeadline

Workflow Makespan Cost Deadline Makespan Cost Cost Reduction
Montage 0.5 819 0.17 983 906 0.07 59.1%
Montage 1.0 1711 0.39 2053 1924 0.16 59.2%
Montage 2.0 5139 1.22 6167 5678 0.55 55.4%
Montage 4.0 11818 2.56 14182 13543 1.34 47.7%

Epigenomics TAQ 7897 2.83 9476 9187 2.45 13.4%
Epigenomics HEP 13602 5.82 16322 16138 2.37 59.2%

(iii) using only the input data volumes, and (iv) using both duration and data volume. In
all instances, the use of some supporting information reduced the average makespan. The
greatest reduction (8.6%) was observed in the executions of Montage with degree 2.0.

Figure 2 shows the distribution of the average makespan by VM types used in
the execution. High-performance VMs tended to be used more often when supporting
information was used. Increased parallelism (machines with more processing nodes) and
execution speed of the workflow activities provided improvement in the makespan.

Table 1 shows the average monetary costs of the executions with the HEFTDead-
line. The deadline used for each instance was 120% of the average makespan obtained
for the same instance with HEFTData using the support information estimated activity
durations and input data volumes. The table shows that, with an increase of 20% in the
makespan, the HEFTDeadline reduced the workflow average execution cost up to 59.2%.

References
Cuevas-Vicenttin, V. et al. (2012). Scientific workflows and provenance: Introduction and research

opportunities. Datenbank-Spektrum, 12(3):193–203.
Deelman, E., Gannon, D., Shields, M., and Taylor, I. (2009). Workflows and e-Science: An

overview of workflow system features and capabilities. Future Generation Computer Systems,
25(5):528–540.

Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., and Vahi, K. (2013). Characterizing
and profiling scientific workflows. Future Generation Computer Systems, 29(3):682–692.

Topcuouglu, H., Hariri, S., and Wu, M.-Y. (2002). Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst., 13(3):260–274.

