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Abstract. Exposure to fine particulate matter (PM2.5) poses a health risk in
urban centers, demanding reliable forecasting systems. This paper proposes a
predictive model based on machine learning applied to real-world data with
730,558 records collected by low-cost sensors in the city of Fortaleza, Brazil.
We evaluated the performance of Random Forest, XGBoost, MLP, and SVR al-
gorithms, following data preprocessing and calibration. The Random Forest
model achieved the best performance, with an R2 = 0.988 and an RMSE =
0.125. SHAP analysis identified PM10 e O3 as the most relevant variables
for prediction. The results suggest that artificial intelligence techniques can
improve urban environmental monitoring and have strong potential to support
data-driven e-Science platforms.

Resumo. A exposição a partı́culas finas em suspensão (PM2,5) representa um
risco à saúde em centros urbanos, exigindo sistemas de previsão confiáveis. Este
artigo propõe um modelo preditivo baseado em aprendizado de máquina apli-
cado a dados reais com 730.558 registros coletados por sensores de baixo custo
na cidade de Fortaleza/CE. Testamos os algoritmos Random Forest, XGBoost,
MLP e SVR, após pré-processamento e calibração dos dados. O modelo Ran-
dom Forest obteve o melhor desempenho, com R2 de 0,988 e RMSE de 0,125.
A análise SHAP revelou PM10 e O3 como as variáveis mais relevantes para
a predição. Os resultados indicam que técnicas de inteligência artificial po-
dem melhorar o monitoramento ambiental urbano, com potencial para integrar
plataformas de e-Ciência orientadas a dados.

1. Introdução
A poluição do ar é uma ameaça crescente à saúde pública global, resultando

na liberação de substâncias tóxicas no ambiente [Goudarzi et al. 2019]. Segundo re-
latório com dados da Organização das Nações Unidas (ONU), em 2016 quase 90% da
população em grandes cidades respirou ar poluı́do, levando a 4,2 milhões de mortes de-
vido à poluição [DESA 2023].
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Com isso, sistemas de previsão da qualidade do ar são essenciais para estimar
os nı́veis de qualidade do ar e fornecer informações rápidas, precisas e confiáveis para
minimizar os efeitos adversos da poluição do ar na saúde humana e no meio ambiente.
Sensores de baixo custo têm se destacado como alternativa viável aos sistemas tradicio-
nais de monitoramento, por serem econômicos, compactos e fáceis de implantar, permi-
tindo a formação de redes densas e gerando grandes volumes de dados espaço-temporais
[Chojer et al. 2020].

A manutenção da qualidade do ar requer previsões rotineiras da poluição ambi-
ental, a partir do monitoramento dessas densas redes de sensores. Existem muitos es-
tudos na literatura para esse propósito, que utilizam modelos estatı́sticos e machine le-
arning (aprendizado de máquina) para a predição [Rahman et al. 2024, Li and Sun 2021,
Biancofiore et al. 2017]. Nos últimos anos, o desenvolvimento de modelos preditivos de
qualidade do ar baseados em algoritmos de aprendizado de máquina surgiu como uma
das direções de pesquisa para abordar as complexidades de grandes conjuntos de da-
dos espaço-temporais de qualidade do ar, aprendendo a relação oculta dentro de dados
históricos [Asgari et al. 2022].

Diante do contexto apresentado, este trabalho investiga a aplicação de técnicas
de aprendizado de máquina na predição da qualidade do ar com base em dados reais
coletados por 25 sensores com hardware de baixo custo distribuı́dos em uma cidade do
nordeste brasileiro. Ao todo, 730.558 registros foram utilizados para prever os nı́veis de
PM2,5, com base em variáveis meteorológicas e poluentes atmosféricos. A abordagem
proposta avalia quatro modelos de regressão e suas capacidades preditivas, sendo o mo-
delo Random Forest o que alcançou o melhor desempenho na predição de (PM2,5), com
R2 = 0,988 e RMSE = 0,125. Esses resultados indicam o potencial de tais técnicas para
aprimorar o monitoramento ambiental urbano.

2. Material e Método
A Figura 1 discrimina na forma de timeline o delineamento geral da proposta,

desde o sensoriamento ambiental até a avaliação dos modelos preditivos de aprendizado
de máquina utilizados. As etapas são explicadas no decorrer das subseções seguintes.

Figura 1. Timeline da modelagem de predição da qualidade do ar.

2.1. Dados Reais de Qualidade do Ar - Dataset
A coleta dos dados ocorreu por meio da rede de monitoramento da qualidade

do ar composta por dispositivos denominados MoQA1 (Air Quality Monitor). Imple-
mentado em maio de 2023, esse sistema é constituı́do por 25 sensores inteligentes de

1https://www.youtube.com/watch?v=KyhA3OIivfM
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baixo custo, estrategicamente distribuı́dos em diferentes pontos da cidade de Fortaleza,
abrangendo áreas escolares, corredores de tráfego, centros comerciais, unidades de saúde,
espaços públicos e zonas industriais. Os dados coletados pelos dispositivos MoQA fo-
ram organizados em uma base de dados, previamente calibrado por meio de métodos de
validação cruzada, baseados em abordagens testadas e validadas em uma pesquisa ante-
rior [Alves 2023]. O conjunto de dados contém um total de 730.558 registros distribuı́dos
em oito variáveis ambientais - Temperatura, Umidade, PM2,5, PM10, NO2, CO2 e O3.

2.2. Pré-Processamento
Seja X = {x1, x2, ...xn} ∈ Rn×d o conjunto de atributos numéricos extraı́dos do

monitoramento ambiental, onde n representa o número de amostras e d o número de atri-
butos. O vetor de saı́da (variável alvo) é representado por y = {y1, y2, ...yn} ∈ Rn, sendo
yi correspondente à concentração de material particulado fino PM2,5 na i-ésima amostra.
Além disso, antes de iniciar o processamento matemático, todas as variáveis categóricas
xj ∈ R, como colunas contendo strings ou identificadores sem relevância preditiva, fo-
ram descartadas para assegurar compatibilidade com os algoritmos supervisionados, que
exigem entrada vetorial contı́nua.

Cada atributo xj ∈ R, para j = 1, 2, ..., d, foi padronizado utilizando a
normalização Z-score, representada por:

x̃j =
xj − µj

σj

(1)

onde µj é a média do atributo j e σj é o desvio padrão.

2.3. Modelos Preditivos
2.3.1. Random Forest (RF)

Random Forest (RF) tem como princı́pio fundamental a construção de múltiplas
árvores de decisão, selecionando amostras e caracterı́sticas de forma aleatória, e
então agregar os resultados por meio de votação ou média para obter a previsão fi-
nal [Zou et al. 2025]. O algoritmo faz uso da técnica bootstrap sampling, na qual são
geradas várias amostras do conjunto de dados de treinamento com reposição. Para cada
uma dessas amostras, uma árvore de decisão individual é construı́da utilizando um sub-
conjunto aleatório dos atributos disponı́veis. Esse processo garante diversidade entre as
árvores, tornando o modelo mais generalizável à medida que o número de T árvores au-
menta:

H(x) =
1

T

T∑

i=1

hi(x) (2)

em que hi(x) é a saı́da da i-ésima árvore de regressão hi para a amostra x.

2.3.2. XGBoost (eXtreme Gradient Boosting)

O método XGBoost tem como suas caracterı́sticas mais importantes, a capacidade
de lidar com dados ausentes, evitar overfitting, alcançar alto poder preditivo e execução
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rápida [Cengil 2025]. O algoritmo foi desenvolvido com base no conceito de boosting,
no qual cada nova árvore é treinada para corrigir os erros da árvore anterior. Essa correção
de erros ocorre minimizando iterativamente a função de perda, dada pela equação:

L(t) =
n∑

i=1

l(yi, y
(t−1) + ft(xi)) + Ω(ft) (3)

onde l é a função de perda, t representa a iteração atual, t − 1 as iterações anteriores e
Ω(ft) é um termo de regularização que auxilia na redução do overfitting.

2.3.3. Multilayer Perceptron (MLP)

O Multilayer Perceptron (MLP) é um algoritmo de aprendizado de máquina ins-
pirado no funcionamento do cérebro humano, sendo composto por, no mı́nimo, três ca-
madas: a camada de entrada, responsável por receber os dados; uma ou mais camadas
ocultas, que realizam o processamento intermediário; e a camada de saı́da, que entrega
a predição final. Cada camada é formada por unidades chamadas perceptrons, que cons-
tituem os blocos fundamentais da rede. A capacidade de aprender padrões complexos e
não lineares nos dados se deve, em grande parte, ao uso de funções de ativação nas cama-
das ocultas. Considerando i como a i-ésima camada da rede e j como a j-ésima unidade
oculta da camada, tem-se:

z
[i]
j = W

[i]T

j · x+ b
[i]
j (4)

em que x representa o vetor de entrada do neurônio, W [i]
j é o vetor de pesos, b[i]j é o termo

de viés, e z
[i]
j é a saı́da linear (pré-ativação) do neurônio [Jairi et al. 2024].

2.3.4. SVR (Support Vector Regression)

O SVR (Support Vector Regression) é uma variação do SVM (Support Vector Ma-
chine), utilizada para tarefas de regressão. Seu principal objetivo é encontrar uma função
que melhor estime o valor de saı́da com base nos valores de entrada. O mapeamento de
entrada-saı́da para casos não lineares [Galli et al. 2018], utilizando uma função kernel,
assume a forma:

f(x) =
n∑

i=1

(αi − α∗
i )K(xi, x) + b (5)

onde, αi e α∗
i são os multiplicadores de Lagrange;K(xi, x) é a função kernel, que trans-

forma os dados de entrada para um espaço de caracterı́sticas de maior dimensão; e b é o
viés do modelo.

2.4. Avaliação de Desempenho dos Modelos Preditivos

Os dados foram divididos em 80% para treino e 20% para teste, proporção cons-
tantemente utilizada em modelagens preditivas, sendo normalizados no intervalo de 0 a
1. Para os algoritmos Random Forest e XGBoost, foram escolhidas 100 árvores de re-
gressão. Além disso, o modelo XGBoost contou com uma taxa de aprendizado de 0,1 e
uma profundidade máxima das árvores de 6.
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As métricas adotadas para avaliar o desempenho dos modelos de aprendizado de
máquina foram o coeficiente de determinação (R2), dada pela expressão a seguir:

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2

(6)

e a raiz do erro quadrático médio (RMSE, do inglês Root Mean Squared Error), dada pela
equação a seguir:

RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2 (7)

onde yi corresponde ao valor real da i-ésima amostra, ŷi é o valor previsto da i-ésima
amostra e ȳ representa a média das observações.

3. Resultados e Discussões

Este artigo usou abordagem de aprendizado de máquina para prever a qualidade
do ar usando um conjunto de dados real. Para esse propósito, todo esse estudo foi rea-
lizado usando Python (v.3.10), uma linguagem de programação, em um computador de
processador i3, placa GPU e 12 GB de RAM. Nessa perspectiva, esta seção se concentra
na predição de concentrações do poluente atmosférico PM2,5 na capital de Fortaleza/CE
desenvolvida com os modelos de aprendizado de máquina RF, XGBoost, MLP e SVR. O
PM2,5 foi escolhido como variável alvo por seu potencial danoso à saúde, uma vez que
pode facilmente entrar nos pulmões levando vı́rus, o que representa sérios riscos à saúde,
particularmente para populações vulneráveis, como crianças e idosos [Lakra et al. 2025].

Primeiro, a variação e variabilidade dos diferentes poluentes atmosféricos é apre-
sentada no violin plot (vide Figura 2), que exibe a distribuição das caracterı́sticas finais
dos dados. Para aumentar a clareza dos registros, o logaritmo dos dados coletados foi
calculado na etapa de pré-processamento.

Figura 2. Diagrama violin plot comparando os poluentes atmosféricos sensoria-
dos.
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Segundo, o desempenho dos modelos implementados é apresentado na Tabela 1,
a seguir. A relação entre o PM2,5 previsto e os nı́veis reais de PM2,5 foi descrita com
valores de R2 e RSME nos modelos RF, XGBoost, MLP e SVR, com os melhores valores
de R2 e RSME de 0,988 e 0,125, respectivamente, para RF, e valores de R2 e RSME de
0.924 e 0.318, respectivamente, para o MLP. O modelo RF forneceu o menor valor de
RMSE. Em outras palavras, ele mostrou o desempenho de previsão mais bem-sucedido,
enquanto o modelo SVR teve a maior taxa de erro, particularmente, RMSE (6,053). A
maior determinação dos valores de R2 explica que o modelo RF é mais eficiente e melhor
do que o modelo MLP na previsão de PM2,5. O melhor desempenho do modelo RF se
deve à superioridade bem conhecida em problemas e relações não lineares e modelagens
complexas com PM2.5 [Kawichai et al. 2025].

Tabela 1. Desempenho dos modelos preditivos
Modelo R2 RMSE

Random Forest 0.9880 0.1250
MLP 0.9240 0.3180

XGBoost 0.9081 0.3510
SVR -26.499 6.053

Com base nos resultados obtidos, uma simulação do desempenho de saı́da dos
modelos RF, XGBoost, MLP e SVR versus valores-alvo de previsão dos nı́veis de PM2,5

é mostrada na Figura 3. Cruzando com o resultado apresentado na Tabela 2 para o maior
valor do coeficiente (R2) do RF, a Figura 3a exibe uma correlação relativamente alta entre
os valores de saı́da e alvo para a previsão da concentração de PM2,5 na cidade de Forta-
leza/CE. A Figura 3b exibe a segunda melhor correlação, para o modelo XGBoost. Por
fim, a Figura 3d apresenta o comportamento da correlação para o modelo que apresentou
o maior erro e o menor R2, o SVR.

Figura 3. Diagramas de dispersão de concentrações observadas e previstas do
poluente PM2,5 dos modelos Random Forest, XGBoost, MLP e SVR.

Finalmente, a Figura 4 mostra o efeito das variáveis na concentração prevista de
PM2,5 usando o modelo de maior R2 e menor erro, particularmente, o modelo RF. Esses
efeitos foram medidos usando gráficos SHAP, que fornecem insights sobre como cada
uma das variáveis contribui para a saı́da do modelo [Deveer and Minet 2025]. Valores
SHAP positivos indicam que uma variável contribui para aumentar o valor previsto (como

Proceedings of the XIX Brazilian e-Science Workshop (BreSci) October 2025 – Fortaleza, CE, Brazil

70



é o caso das variáveis PM10 e O3), enquanto valores SHAP negativos significam que a
variável contribui para diminuir o valor preditivo do modelo (como é o caso da tempera-
tura externa). Da mesma forma, os pontos nos gráficos representam o valor de atribuição
de cada variável e são coloridos com base nos valores da variável - altos impactos são
coloridos em vermelho (novamente as variáveis PM10 e O3) e baixos impactos são colo-
ridos em azul (novamente a temperatura externa). Quando os pontos são empilhados ver-
ticalmente (ou próximos de zero), significa que a variável não altera significativamente o
resultado do modelo para diferentes observações (como é o caso das variáveis humidade,
NO2, CO e temperatura interna).

Figura 4. SHAP do modelo RF para concentrações de PM2,5.

4. Conclusão
Este artigo mostrou que é possı́vel prever concentrações de PM2,5 com alta pre-

cisão utilizando sensores de baixo custo e técnicas de aprendizado de máquina. Dentre os
modelos avaliados, o Random Forest obteve os melhores resultados. A análise SHAP per-
mitiu compreender o peso relativo das variáveis, destacando PM10 e O3 como principais
influenciadores das previsões. Esses achados reforçam o papel da inteligência artificial
como ferramenta de apoio à ciência ambiental e à gestão urbana. Como continuidade,
propõe-se expandir a modelagem para outros poluentes e explorar arquiteturas mais com-
plexas, como redes neurais profundas e modelos hı́bridos em ambientes computacionais
distribuı́dos.
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