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Abstract. Uncertain time series analysis has recently becamamportant
research topic, particularly when searching fortiga@s of natural phenomena
using similarity functions. Natural phenomena ariee modeled as time
series, such as in weather forecast, in which teaipee variation is
monitored through space and time. In such a contdterent models for
weather forecast produce variations on predictitimst can be interpreted as
predictions uncertaintyOne important problem is to represent the variagion
presented in predictions along space and time.rtfeoto address a solution
to this problem, this paper defines a new typeeaks, here named uncertain
spatio-temporal series, and proposes a computali@ti@ategy to manage
uncertainty in probabilistic databasélsing this new series some analytical
gueries can be performed, leading to the discowgmnteresting observation
patterns.

1. Introduction

Recently, uncertain data management has receiveat gttention from the scientific
community [Dan Suciu, 2011]. Among the main caubas generate data uncertainty,
some of them can be mentioned: increasing usersoss data; multiple sources data
integration inconsistencies; current privacy pedciof information, where data is
disturbed to safeguard the identity of their ownemformation transmitted over the
network and corrupted in the process; the growmmgrest for the management of
applications involving moving objects where the ipos is regularly updated; in
different application domains data is generatedgisomplex models, after which they
are published on the web. Hence, there is neitlaek tof the original data sets nor of
the process they have been submitted to.

In applications such as the weather foredast,temperature in a given region is
predicted using measurements obtained from sensongy inferring from historical
data published in the weather sites for severatsyddowever, when temperature is
forecasted using a single model, a time seriesbmrused to analyze temperature
changes, since for each timestamp a single valueessured and no uncertainty is
taken into consideration.

Differently from single model forecastingnsembldorecast [Dufek, 2015] involves
the analysis of results from different models. Wicls scenario, the variations on model
predictions can be interpreted as prediction uagdst. Modeling uncertainty in
ensemble forecasting requires having multiple \&foe each timestamp, in a particular
point in space, departing from traditional timetsgrepresentation.

In this case, for each timestamp sets of ptiedis are obtained with different
probabilities of occurrences, and various levelsunfertainty measured by different
devices or models. In this context, a new timeesemodel has been definpbfalg,
2009], the so-calledincertain time seriegUTS). Consequently, uncertainty can be
naturally assessed through a probabilistic or detestic similarity measure,



considering the set of values in each time slom&works have been developed in this
direction [Abfalg, 2009], [Mi-Yen Yeh, 2009], [Sarangi, 201(QPallachiesa, 2012],
[Orang, 2014], and some of them are reviewed ini@e@.

Similarity measures in uncertain time serieaken it possible to analyze the
uncertainty of the variable studied with respecitédemporal component. However, it
is known that most natural phenomena depend osgagal and temporal components.
To illustrate how the use of other components (@ghltitude) can help in the analysis
of an event, consider the example shown in Figurestiere different sensors collect
temperature measurements during 5 consecutiveinayspecific region.
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Figure 1. A time series of daily SST between the dates of 2/4/2006 and 2/8/2006 measured by the

NOAA AVHRR satellite. Font: [McGuire, 2013]

It is possible to see some areas where teriyserahanges are visible, whereas in
other areas these changes are not so obviouspodhe high volume of information.
Furthermore it is known that the altitude is a &bke that changes the atmospheric
temperature, so that the spatial location is anomamt aspect to study this
phenomenon. Moreover, identifying regions with $amispatial and temporal
conditions helps to understand the dynamics ofetlvesather events. In this case the
uncertainty not only depends on the temporal corapyrwhich hinders analysis by
traditional methods or uncertain time-series apginea.

In the literature uncertainty in spatio-temgdageries has not been explored yet. This
work aims at studying the inclusion of spatial caments in the phenomenon analysis,
as well as proposing a computational strategy toaga uncertainty in probabilistic
database, making use of the UpsilonDB model [Garegalnd Porto, 2014], which
manages the uncertainty in numerical simulatioa.dat

Being able to compute uncertainty helps ndy aleal with noise in the data, but
contributes as well to the efficiency of clusteritechniques, classification, outlier
detection and probabilistic queries in Big Datalpeas. One simple reason can be
theoretically used to justify this fact: the largbe number of measurements for the



same observation, the closer their average to xpected value, which consequently
reduces uncertainty. On the other hand, regionslatésets with higher levels of
uncertainty can be discarded in the early stagéseoinvestigation.

The rest of this paper is structured as faflo§ection 2 describes the main concepts
around Uncertain Time Series (UTS); Section 3 aldethe UTS theory to define
uncertainty in Spatio-Temporal Series; Section dcdbes the UpsilonDB system and
shows how to model Uncertain Spatio-Temporal Sarsgsg UpsilonDB; and finally,
Section 5 concludes the paper with suggestionutare work.

2. Uncertain Time Series. Background

In this section, a formalization for uncertain thseries is presented. Furthermore,
techniques to compute the uncertainty of valuesdbasn similarity measures are
discussed.

Definition 1 (Uncertain Time Series) [Abfalg et al., 2009]an uncertain time series
X of length n consists of a sequen®¢;, X, X, ..., %> 0f n elements, where each
elementX; contains a set afd-dimensional points (sample observations) Xies {X1,
X2, ..., X With x; € R%. Wheres is the sample size of. Figure 2 shows an uncertain
time series irR2.
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Figure 2: Example of uncertain time series X = {X;, X,, ... X,,} in R%. Font: (Dallachiesa, 2012)
Consider two time series X = {(%;), (Xo, t2), ..., (¢, t)) and Y = ((¥, t) , (o, t2),
..., ({, t)), where each value; Xor V) is a point in the d-dimensional space to the
timestamp it It is called similarity measurethe distance between X and Y in the
timestamp .

In the literature, various approaches to dateusimilarity between time series and
data sequences have been described. The three impsttant ones to measure
uncertainty in UTS areEuclidean distanc¢ED) [Faloutsos, 1994]| ,-norms (Lp) and
Dynamic Time WarpindDTW) [Donald J Berndt, 1994]. These measures Haeen
adapted to compute uncertainty in uncertain timeeseNext section will present the
most important approaches to deal with this problem

2.1 Uncertain similarity measure

Uncertainty can be measured in two ways: probaioiity and deterministically. For
this reason similarity measures may be classifeefDaang and Shiri, 2014]:

Probabilistic Similarity Measures (PSM):. distance is determined using a
probabilistic distribution function (pdf), a comhiion of some pdfs, or simply
calculating a probability for each value in eaghdstamp i. Thé.p-norm distancas
one of the most analyzed similarity measures. [Bpf2009] assumes that for two
uncertain time series X and Y, the distance ismibg all probable distances between
each independent observed values at different tamgss. Distances are calculated



using alLy-norm distancewith p = 2, which corresponds to the Euclideartatise.
These distances are summarized through an empdistibution function, reflecting
the distribution of all possible distance valuesns®n the samples of the corresponding
uncertain time series. A threshotdis defined in order to decrease the exponential
volume calculation. A distance is considered fdasinit is smaller than this threshold.
These upper and lower distance bounding can ee$iiceency and decrease computing
workload. Applying the same procedure [Abfalg, 200%sed aDTW-distance, as
defined by Berndt (1994), to compute uncertainty.

Other works define new uncertain similarity measurdli-Yen Yeh (2009)
calculates the Euclidian distance between uncetitai@ series X and Y as a pdf with a
corresponding mean and variandist(X,Y) = Y. (x; —y;)?. Assuming that the
distance? are independent random variables with me&pf) and varianc&/(D?), by
the Central Limit Theorem, the distar@est( X,Y)is a random variable which tends to a
normal distribution with a corresponding mean andriance Dist(X,Y) o«

N E(D?), X Var(D?)).

Orang (2014) formulates the notion of normalizatfion UTS, using a model for
uncertain correlation as a normal random variabbe.this purpose, they assumed that
the random variables in the given UTS are indepeinded identically distributed, and
that the only available information is the expectemlue and variance at each
timestamp. Whereas all are independent randomblasiathe correlation coefficient
has been expressed as the sum of two variabldeefame type. The methodology to
compute the similarity between two series is vemyilar to that used by [Mi-Yen Yeh,
2009]. According to the Central Limit Theorem, asnareasescorr(X,Y) approaches

the normal distributiomorr(X,Y) « N(E(corr(X,Y)),Var(corr(X,Y))).

Deterministic Similarity Measures (DSM): In this case, a real distance is calculated
between two UTSs. The most used DSMDISST-distanceThis similarity measure
was defined in [Sarangi, 2010]o calculate this distance, it is necessary to kitiosv
distribution of the data. Dust is defined @d/ST(X,Y) = /Y dust(x;,y;)? where
dust(x;,y;) = ~log(@(|x; — y;])) —k andk = —log (#(0)). The termp(|x; — y;|)
is calculated using the distribution function sjfiedi by the user.

There are other approaches that define unaertaving averages as filters to reduce
noise in the data. Through the calculation of ayeraalues, the values of each series
are recalculated. Some similarity measures can lieeapplied to these recalculated
new values and depending on the approach, prosi@bidir deterministic similarity can
be obtained. Examples of uncertain moving averagedJMA and UEMA defined in
[Dallachiesa, 2012].

3. Uncertainty in Spatio-Temporal Series

A spatio-temporal series is an extension of a tseees, where spatial and temporal
components qualify the studied variable. Havinguased, in section 2, uncertainty in
time-series, this section extends the notion tdéigppemporal series.

After analyzing Figure 1, it is possible tosebve that the approaches discussed in
section 2 are not sufficient for the uncertaintynpaitation for this type of problem. The
main cause is that the uncertainty is related & dénsity values in space and time.



Based on the above ideas it is possible to oudimew model of uncertain series, as
follows:

Definition 2 (Spatio-Temporal Series- STS): a spatio-temporal series G of length
n consists of a sequence of values i={,..., W}, a spatial coordinate s(x,y,z), such
that G.s indicates that a series G is in a posisiai space and each valugis at
timestamp .

Definition 3 (Uncertain Spatio-Temporal Series - USTS): USTS is a spatio
temporal series such that for each time instastd spatial position (x,y,z), multiple
values v;j of vexist. Thus v={(v1, 1, Vi, 2.., i, m), (V2, 2, V2, 20, Vo, )« { Vim, 1, Vim, 2+, Vi,

n)}-

Definition 4: Uncertain Spatio-Temporal Series Dataset: is a setD of uncertain
spatio-temporal series (USTS), i.®={sty, sb,..., sk}

The calculation of the uncertainty in thesedsi of series helps reducing the load on
the query processing spatio-temporal databasee sincan be grouped by similarity.
Other data exploration processes, such as clugtaaimd classification with high
volumes of data, can also take benefit from thigraach.

4. Managing Uncertainty with UpsilonDB

UpsilonDB [Gongalves and Porto 2014] is a systesigieed to manage the uncertainty
in numerical simulation data. The system adopts Wheelation Model [Lyublena,
2008] in which relations may represent facts tha ancertain, due to possible
alternative interpretations. The different alteives (or hypothesis) are represented by a
random variable that assumes a probability assmtiateach alternative.

Typically, numerical simulations are based iorprecise mathematical models.
Moreover, a numerical simulation execution recei@gsnput a set of parameter values
that specifies the initial simulation state anddeorconditions. The chosen parameter
values approximate the model to reality, introdgcan new uncertainty factor on the
model predictions. UpsilonDB computes the uncetyagi predictions considering the
model and the parameter uncertainties, and stoneslagion output and predictions
using the U-Relational model.

4.1 Methodology for encoding hypothesis

To understand how hypotheses are encoded, an exaingoh the original article
regarding UpsilonDB [Goncalves and Porto 2014]nalgzed. When studying the free
fall of an object, the phenomenegrcan be expressed by three models or different. laws
In this case, there are three possible hypotheses:

— _ 2
H. ——— Law of free fall a(t) = -9
H —— Stokes’ law 1H v(t) = —gt+ Vo
H, —— Velocity-squared law s(t) = — (%) t2 + vyt + s

The fact of having three possible explanatitmisthe same phenomenon suggests
that there is some uncertainty associated with égpbthesis. To explain this level of



uncertainty, UpsilonDB extracts the scheme of fiomatl dependencies (FD) from the
mathematical structure of each model. Thus, foth¢lfollowing FDs are extracted:

FDs={p—> 0,¥,%; O,it—> &, g, ¥t,p—=> Vv; 0,¥ S t,u—> s}

A way to precisely identify H1's formulatios needed, i.e., a data representation of
a scientific hypothesis. This is achieved by intradg hypothesisd v as a special
attribute in the FD. On the other hand, for theaddtDs a global key is calculated; this
key represents the set of parameters describinghteomenoxp.

To reflect the uncertainty present in the paters describing a given phenomenon,
theid ¢ is introduced, and hence, the same phenomenohaandifferent values for
input parameters. Through FDs, the hypothadeand the phenomenap may also
generate the database schema in UpsilonDB autatigatic

A set of simulations is executed to calculdite uncertainty associated with each
parameter. The initial data uncertainty is caladaby the frequency of the initial
values. Subsequent uncertainty values are obtdimedigh the propagation of the
initial uncertainty into the predictive data aswhan Figure 4

Yie] | & | w & Prior || Posterior
1 | I | 2188.36 1 [ 167
1|1 | 220582 1 168
1| 1 | 2320.51 1 167
1| 1 | 2337.07 1 165
1| 1| 2452.66 1 149
1| 1| 247012 1 145
1 2 [ 203059 5 ] 20
1| 2 | 2043.44 05 019
1| 2| 4991.92 05 000
1| 2 | 4991.97 05 000
T | 3| 477887 05 [ 000
1| 3 7056 .05 .00o
1| 3 | 4944.72 05 00
1 3 | 4944 8D 05 00

Figure 3: Table generated with UpsilonDB [Gon¢alves and Porto 2014].

Finally, a probabilistic database is obtainédgether with all the competing
predictions, as possible alternatives, which areually inconsistent.

4.2 Modeling Uncertain Spatio-Temporal Seriesin UpsilonDB

Spatio-temporal series represent a subset of noatesimulations, those in which
predictive variables depend only on their spatiakt position and constants, provided
as parameters.

Thus, in line with UpsilonDB model, let us swter @ (phi) as the phenomenon a
spatio-temporal series represents, ahthe set of alternative spatio-temporal series for
a given phenomenon. Consider y@gs the set of n-dimensional points in spacetand
set of timestamp values. Furthermore, let us censida variable, whose values in time
are taken as a series. Finally, let us assume iabl@rP=[0,1] representing the
uncertainty on each spatio-temporal value of X. nThe line with UpsilonDB
uncertainty introduction approach, we can adaptdéfnition of Uncertain Spatio-
Temporal Series iDefinition 3by Y_1(Upsilon, S, t, XP).



Now the question is how can one produce Y dvirly USTS ? The procedure in
Figure 3 discusses a method for producing Upsilom&&tions from USTS.

In Figure 3,Y 1 represents an uncertain relation for the sptiis series
representing the phenomenon phi=1. The probahidlisgribution for each X value
corresponds to its frequency in a spatial-time fposi By adopting the U-Relational
model, analytical queries may now be submitted tpsildnDB exploring the
uncertainty spatio-temporal characteristics pregeiihe model, such as: (i) giving all
the uncertain values collected for a specific pmee@nong, which is the most predicted
value considering the position s at time t?; d@ipup all the observations that have
similar behavior at a certain position s in a givperiod of time; (iii) Select the regions
and time periods where the uncertainty predict®obalow a specific threshold.

1. Build a certain USTS relation :
USTS (phi,upsilon, S, t, X), with key (phi,upsildS, t)
Repair the key so that we have a U-Relation:

Create Table’ _1 as select U.upsilon,U.S, U.t, U.X, U.ro from
(repair key upsilon in (select upsilon, S, t, Xunt{*) as ro from USTS

N

where phi=1 group by upsilon, S,t) weight by rolas

Figure 3. Algorithm for producing UpsilonDB relations

In the meteorological domain, for example, ripge such as the ones mentioned
above are very important for the analysis of res@iince they allow scientists to predict
situations where time or spatial coordinates cafixael. The spatio-temporal dynamic
analysis is very complex and, for this reasongquires that at least one component
should be fixed. Consider, for example, some pha&amanstudied with respect to time.
In this situation, if space components are fixéayauld be possible, for example, from
the snowfall measurements of any given region,réalipt snowfall measurements for
other regions with similar spatial conditions inrteen seasons. Moreover, for
phenomena that depend on the spatial componernts temporal component is fixed,
it would be possible to predict that the tempemtuaries when the sea rises or falls
with the tide. The development of strategies for this type of ysial is vital for
prediction of experiment results.

5 Conclusion

Due to the increasing volume of data produaadi processed by the most diversified
types of sensors, the need to manage uncertaingdatad special attention from the
scientific community [Dan Suciu, 2011]. This papgves a step forward in this
direction. It formalizes the uncertain spatio-temgbseries to address problems where
spatial and temporal location influence experimlergaults, such as the ones observed
in natural phenomena. Additionally, this work prepe a computational strategy to
manage uncertainty in probabilistic database withgtructure of this uncertain series,
through which a set of probable values for eachiapand temporal component can be
analyzed, and its uncertainty degree can be quenhtiby submitting analytical queries
to this database. The next step of this work, clyen development, is to implement



the algorithm defined in Figure 3 and process ditally queries applied to real
phenomena.
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