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Abstract. Uncertain time series analysis has recently become an important 
research topic, particularly when searching for features of natural phenomena 
using similarity functions. Natural phenomena are often modeled as time 
series, such as in weather forecast, in which temperature variation is 
monitored through space and time. In such a context, different models for 
weather forecast produce variations on predictions that can be interpreted as 
predictions uncertainty. One important problem is to represent the variations 
presented in predictions along space and time. In order to address a solution 
to this problem, this paper defines a new type of series, here named uncertain 
spatio-temporal series, and proposes a computational strategy to manage 
uncertainty in probabilistic database. Using this new series some analytical 
queries can be performed, leading to the discovery of interesting observation 
patterns. 

1. Introduction 

Recently, uncertain data management has received great attention from the scientific 
community [Dan Suciu, 2011].  Among the main causes that generate data uncertainty, 
some of them can be mentioned:  increasing use of sensors data; multiple sources data 
integration inconsistencies; current privacy policies of information, where data is 
disturbed to safeguard the identity of their owners; information  transmitted over the 
network and corrupted in the process; the growing interest for the management of 
applications involving moving objects where the position is regularly updated; in 
different application domains data is generated using complex models, after which they 
are published on the web. Hence, there is neither track of the original data sets nor of 
the process they have been submitted to. 

     In applications such as the weather forecast, the temperature in a given region is 
predicted using measurements obtained from sensors, or by inferring from historical 
data published in the weather sites for several years. However, when temperature is 
forecasted using a single model, a time series can be used to analyze temperature 
changes, since for each timestamp a single value is measured and no uncertainty is 
taken into consideration. 

     Differently from single model forecasting, ensemble forecast [Dufek, 2015] involves 
the analysis of results from different models. In such scenario, the variations on model 
predictions can be interpreted as prediction uncertainty. Modeling uncertainty in 
ensemble forecasting requires having multiple values for each timestamp, in a particular 
point in space, departing from traditional time-series representation. 

     In this case, for each timestamp sets of predictions are obtained with different 
probabilities of occurrences, and various levels of uncertainty measured by different 
devices or models. In this context, a new time series model has been defined [Abfalg, 
2009], the so-called uncertain time series (UTS). Consequently, uncertainty can be 
naturally assessed through a probabilistic or deterministic similarity measure, 



  

considering the set of values in each time slot. Some works have been developed in this 
direction [Abfalg, 2009], [Mi-Yen Yeh, 2009], [Sarangi, 2010], [Dallachiesa, 2012], 
[Orang, 2014], and some of them are reviewed in Section 2. 

     Similarity measures in uncertain time series make it possible to analyze the 
uncertainty of the variable studied with respect to its temporal component. However, it 
is known that most natural phenomena depend on the spatial and temporal components. 
To illustrate how the use of other components (such as altitude) can help in the analysis 
of an event, consider the example shown in Figure 1, where different sensors collect 
temperature measurements during 5 consecutive days in a specific region. 

 
Figure 1: A time series of daily SST between the dates of 2/4/2006 and 2/8/2006 measured by the 
NOAA AVHRR satellite. Font: [McGuire, 2013] 

     It is possible to see some areas where temperature changes are visible, whereas in 
other areas these changes are not so obvious, due to the high volume of information. 
Furthermore it is known that the altitude is a variable that changes the atmospheric 
temperature, so that the spatial location is an important aspect to study this 
phenomenon. Moreover, identifying regions with similar spatial and temporal 
conditions helps to understand the dynamics of these weather events. In this case the 
uncertainty not only depends on the temporal component, which hinders analysis by 
traditional methods or uncertain time-series approaches.  

     In the literature uncertainty in spatio-temporal series has not been explored yet. This 
work aims at studying the inclusion of spatial components in the phenomenon analysis, 
as well as proposing a computational strategy to manage uncertainty in probabilistic 
database, making use of the UpsilonDB model [Gonçalves and Porto, 2014], which 
manages the uncertainty in numerical simulation data.  

     Being able to compute uncertainty helps not only deal with noise in the data, but 
contributes as well to the efficiency of clustering techniques, classification, outlier 
detection and probabilistic queries in Big Data problems. One simple reason can be 
theoretically used to justify this fact: the larger the number of measurements for the 



  

same observation, the closer their average to the expected value, which consequently 
reduces uncertainty. On the other hand, regions of datasets with higher levels of 
uncertainty can be discarded in the early stages of the investigation.  

     The rest of this paper is structured as follows: Section 2 describes the main concepts 
around Uncertain Time Series (UTS); Section 3 extends the UTS theory to define 
uncertainty in Spatio-Temporal Series; Section 4 describes the UpsilonDB system and 
shows how to model Uncertain Spatio-Temporal Series using UpsilonDB; and finally, 
Section 5 concludes the paper with suggestions for future work. 

2. Uncertain Time Series: Background 

In this section, a formalization for uncertain time-series is presented. Furthermore, 
techniques to compute the uncertainty of values based on similarity measures are 
discussed.   

     Definition 1 (Uncertain Time Series) [Abfalg et al., 2009]: an uncertain time series 
X of length n consists of a sequence <X1, X2, X3, ..., Xn>   of n elements, where each 
element Xt contains a set of s d-dimensional points (sample observations), i.e. Xt = {xt,1, 
xt,2, ..., xt,s} with xt,i ϵ ℝd. Where s is the sample size of X. Figure 2 shows an uncertain 
time series in ℝ�. 

 
Figure 2: Example of uncertain time series � = ���, ��, … �
� in ℝ�. Font: (Dallachiesa, 2012) 

     Consider two time series X = ((x1, t1), (x2, t2 ), ..., (xi, ti)) and Y = ((y1, t1) , (y2, t2 ), 
..., (yi, ti)), where each value xi (or yi) is a point in the d-dimensional space to the 
timestamp ti. It is called similarity measure the distance between X and Y in the 
timestamp i.  

     In the literature, various approaches to calculate similarity between time series and 
data sequences have been described. The three most important ones to measure 
uncertainty in UTS are: Euclidean distance (ED) [Faloutsos, 1994],  Lp-norms (Lp) and 
Dynamic Time Warping (DTW) [Donald J Berndt, 1994]. These measures have been 
adapted to compute uncertainty in uncertain time-series. Next section will present the 
most important approaches to deal with this problem. 

2.1 Uncertain similarity measure 

Uncertainty can be measured in two ways: probabilistically and deterministically. For 
this reason similarity measures may be classified as [Orang and Shiri, 2014]: 

     Probabilistic Similarity Measures (PSM): distance is determined using a 
probabilistic distribution function (pdf), a combination of some pdfs, or simply 
calculating a probability for each value in each timestamp i. The Lp-norm distance is 
one of the most analyzed similarity measures. [Abfalg 2009] assumes that for two 
uncertain time series X and Y, the distance is given by all probable distances between 
each independent observed values at different timestamps. Distances are calculated 



  

using a Lp-norm distance with p = 2, which corresponds to the Euclidean distance. 
These distances are summarized through an empirical distribution function, reflecting 
the distribution of all possible distance values between the samples of the corresponding 
uncertain time series. A threshold ϵ is defined in order to decrease the exponential 
volume calculation. A distance is considered feasible if it is smaller than this threshold. 
These upper and lower distance bounding can ensure efficiency and decrease computing 
workload. Applying the same procedure [Abfalg, 2009], used a DTW-distance, as 
defined by Berndt (1994), to compute uncertainty.  

      Other works define new uncertain similarity measures. Mi-Yen Yeh (2009) 
calculates the Euclidian distance between uncertain time series X and Y as a pdf  with a 
corresponding mean and variance: �����, �� = ∑��� − ����.  Assuming that the 
distances �

2 are independent random variables with mean E(�
2) and variance V(�

2), by 
the Central Limit Theorem, the distance Dist( X,Y) is a random variable which tends to a 
normal distribution with a corresponding mean and variance �����, �� ∝
��∑ ���

��, ∑ � !��
���. 

      Orang (2014) formulates the notion of normalization for UTS, using a model for 
uncertain correlation as a normal random variable. For this purpose, they assumed that 
the random variables in the given UTS are independent and identically distributed, and 
that the only available information is the expected value and variance at each 
timestamp. Whereas all are independent random variables, the correlation coefficient 
has been expressed as the sum of two variables of the same type. The methodology to 
compute the similarity between two series is very similar to that used by [Mi-Yen Yeh, 
2009]. According to the Central Limit Theorem, as n increases, corr(X,Y) approaches 
the normal distribution "#!!��, �� ∝ ���$"#!!��, ��%, � !�"#!!��, ����. 

     Deterministic Similarity Measures (DSM): In this case, a real distance is calculated 
between two UTSs. The most used DSM is DUST-distance. This similarity measure 
was defined in [Sarangi, 2010]. To calculate this distance, it is necessary to know the 
distribution of the data. Dust is defined  as   &'(��, �� = )∑ *+�����, ����    where  
*+�����, ��� = )−,#-�∅�|�� − ��|�� − k    and  1 = −log �∅�0��. The term ∅�|�� − ��|� 
is calculated using the distribution function specified by the user. 

     There are other approaches that define uncertain moving averages as filters to reduce 
noise in the data. Through the calculation of average values, the values of each series 
are recalculated. Some similarity measures can then be applied to these recalculated 
new values and depending on the approach, probabilistic or deterministic similarity can 
be obtained. Examples of uncertain moving averages are UMA and UEMA defined in 
[Dallachiesa, 2012]. 

3. Uncertainty in Spatio-Temporal Series 

A spatio-temporal series is an extension of a time series, where spatial and temporal 
components qualify the studied variable. Having discussed, in section 2, uncertainty in 
time-series, this section extends the notion to spatio-temporal series. 

     After analyzing Figure 1, it is possible to observe that the approaches discussed in 
section 2 are not sufficient for the uncertainty computation for this type of problem. The 
main cause is that the uncertainty is related to the density values in space and time.  



  

Based on the above ideas it is possible to outline a new model of uncertain series, as 
follows: 

     Definition 2 (Spatio-Temporal Series - STS):  a spatio-temporal series G of length 
n consists of a sequence of values v={v1, v2,…, vn,}, a spatial coordinate s(x,y,z), such 
that G.s indicates that a series G is in a position s of space and each value vi is at 
timestamp i. 

     Definition 3 (Uncertain Spatio-Temporal Series - USTS): USTS is a spatio-
temporal series such that for each time instant t and spatial position (x,y,z), multiple 
values  vi,j  of v exist. Thus v={( v1, 1, v1, 2,.., v1, m), ( v2, 1, v2, 2,.., v2, m),…,( vm, 1, vm, 2,.., vm, 

n)}.   

     Definition 4: Uncertain Spatio-Temporal Series Dataset: is a set D of  uncertain 
spatio-temporal series (USTS), i.e.,  D={st1, st2,…, stk}  

     The calculation of the uncertainty in these kinds of series helps reducing the load on 
the query processing spatio-temporal database, since it can be grouped by similarity. 
Other data exploration processes, such as clustering and classification with high 
volumes of data, can also take benefit from this approach. 

4. Managing Uncertainty  with UpsilonDB 

UpsilonDB [Gonçalves and Porto 2014] is a system designed to manage the uncertainty 
in numerical simulation data. The system adopts the U-relation Model [Lyublena,  
2008] in which relations may represent facts that are uncertain, due to possible 
alternative interpretations. The different alternatives (or hypothesis) are represented by a 
random variable that assumes a probability associated to each alternative. 

     Typically, numerical simulations are based on imprecise mathematical models. 
Moreover, a numerical simulation execution receives as input a set of parameter values 
that specifies the initial simulation state and border conditions. The chosen parameter 
values approximate the model to reality, introducing a new uncertainty factor on the 
model predictions. UpsilonDB computes the uncertainty of predictions considering the 
model and the parameter uncertainties, and stores simulation output and predictions 
using the U-Relational model. 

4.1 Methodology for encoding hypothesis 

To understand how hypotheses are encoded, an example from the original article 
regarding UpsilonDB [Gonçalves and Porto 2014] is analyzed. When studying the free 
fall of an object, the phenomenon φ can be expressed by three models or different laws. 
In this case, there are three possible hypotheses: 

 

      H1                       Law of free fall 

      H2                       Stokes´ law                        H1 

      H3                       Velocity-squared law 

 

     The fact of having three possible explanations for the same phenomenon suggests 
that there is some uncertainty associated with each hypothesis. To explain this level of 

 ��� = −-� 

6��� = −gt + v: 

���� = − ;-
2< �� + v:t + s: 



  

uncertainty, UpsilonDB extracts the scheme of functional dependencies (FD) from the 
mathematical structure of each model. Thus, for H1 the following FDs are extracted: 

FDs= {φ       g, v0, s0 ;    g, μ       a;    g, v0, t, μ       v;     g, v0, s0, t, μ        s} 

      A way to precisely identify H1’s formulation is needed, i.e., a data representation of 
a scientific hypothesis. This is achieved by introducing hypothesis id υ as a special 
attribute in the FD. On the other hand, for the set of FDs a global key is calculated; this 
key represents the set of parameters describing the phenomenon φ.  

     To reflect the uncertainty present in the parameters describing a given phenomenon, 
the id φ is introduced, and hence, the same phenomenon can have different values for 
input parameters. Through FDs, the hypotheses id and the phenomenon φ may also 
generate the database schema in UpsilonDB automatically. 

     A set of simulations is executed to calculate the uncertainty associated with each 
parameter. The initial data uncertainty is calculated by the frequency of the initial 
values.  Subsequent uncertainty values are obtained through the propagation of the 
initial uncertainty into the predictive data as shown in Figure 4. 

 
           Figure 3: Table generated with UpsilonDB [Gonçalves and Porto 2014]. 

     Finally, a probabilistic database is obtained, together with all the competing 
predictions, as possible alternatives, which are mutually inconsistent.  

4.2 Modeling Uncertain Spatio-Temporal Series in UpsilonDB 

Spatio-temporal series represent a subset of numerical simulations, those in which 
predictive variables depend only on their spatial-time position and constants, provided 
as parameters.  

     Thus, in line with UpsilonDB model, let us consider φ (phi) as the phenomenon a 
spatio-temporal series represents, and Y  the set of alternative spatio-temporal series for 
a given phenomenon. Consider yet, S as the set of n-dimensional points in space and t a 
set of timestamp values. Furthermore, let us consider X a variable, whose values in time 
are taken as a series. Finally, let us assume a variable P=[0,1] representing the 
uncertainty on each spatio-temporal value of X. Then, in line with UpsilonDB 
uncertainty introduction approach, we can adapt the definition of Uncertain Spatio-
Temporal Series in Definition 3 by Y_1(Upsilon, S, t, X, P).      



  

     Now the question is how can one produce Y_1  having USTS ? The procedure in 
Figure 3 discusses a method for producing UpsilonDB relations from USTS. 

     In Figure 3, Y_1 represents an uncertain relation for the spatial-time series 
representing the phenomenon phi=1. The probability distribution for each X value 
corresponds to its frequency in a spatial-time position. By adopting the U-Relational 
model, analytical queries may now be submitted to UpsilonDB exploring the 
uncertainty spatio-temporal characteristics present in the model, such as: (i) giving all 
the uncertain values collected for a specific  phenomenon φ, which is the most predicted 
value considering the position s at time t?;  (ii) group all the observations that have 
similar behavior at a certain position s in a giving period of time; (iii) Select the regions 
and time periods where the uncertainty prediction is below a specific threshold. 

Figure 3. Algorithm for producing UpsilonDB relations 

 

     In the meteorological domain, for example, queries such as the ones mentioned 
above are very important for the analysis of results, since they allow scientists to predict 
situations where time or spatial coordinates can be fixed. The spatio-temporal dynamic 
analysis is very complex and, for this reason, it requires that at least one component 
should be fixed. Consider, for example, some phenomena studied with respect to time. 
In this situation, if space components are fixed, it would be possible, for example, from 
the snowfall measurements of any given region, to predict snowfall measurements for 
other regions with similar spatial conditions in certain seasons. Moreover, for 
phenomena that depend on the spatial components, if the temporal component is fixed, 
it would be possible to predict that the temperature varies when the sea rises or falls 
with the tide. The development of strategies for this type of analysis is vital for 
prediction of experiment results. 

5 Conclusion 

     Due to the increasing volume of data produced and processed by the most diversified 
types of sensors, the need to manage uncertain data gained special attention from the 
scientific community [Dan Suciu, 2011]. This paper gives a step forward in this 
direction. It formalizes the uncertain spatio-temporal series to address problems where 
spatial and temporal location influence experimental results, such as the ones observed 
in natural phenomena. Additionally, this work proposes a computational strategy to 
manage uncertainty in probabilistic database with the structure of this uncertain series, 
through which a set of probable values for each spatial and temporal component can be 
analyzed, and its uncertainty degree can be quantified, by submitting analytical queries 
to this database. The next step of this work, currently in development, is to implement 

1. Build a certain USTS relation : 

•  USTS (phi,upsilon, S, t , X), with key (phi,upsilon, S, t) 

2.  Repair the key so that we have a U-Relation: 

•   Create Table Y_1 as select U.upsilon,U.S, U.t, U.X, U.ro from 
(repair key upsilon in (select upsilon, S, t, X, count(*) as ro from USTS 

where phi=1 group by upsilon, S,t) weight by ro) as U 



  

the algorithm defined in Figure 3 and process analytical queries applied to real 
phenomena.  
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