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Abstract. This study develops and evaluates pan-cancer (PC) models for
cohort-specific (CS) predictions using neural networks (NNs). We adopt a dual
approach, including a method inspired by few-shot learning, aiming at improv-
ing the models’ ability to distinguish between normal and tumorous tissues
across diverse cohorts. The first approach trains a NN with comprehensive PC
datasets containing 16 cancer types, comparing it against CS models on a tar-
get cohort, while the second analyzes whether PC models could generalize to
smaller and unseen cohorts by training on 15 cohorts and evaluating on the
excluded cohort. Our experiments show that PC models generally outperform
CS models, even with limited sample sizes and class imbalances. Moreover, the
few-shot approach successfully generalizes to other cancer types, highlighting
its potential to advance personalized cancer diagnosis and treatment.

1. Introduction

In the last decades, new genome sequencing technologies have greatly increased the avail-
ability of gene expression data. Besides enabling a deeper understanding of genomic
diseases, they also make it possible to develop machine learning (ML) models that can
potentially be used in clinical settings. The genomics of cancer, in particular, has been
widely studied and modeled, as it is one of the leading causes of death worldwide. As
an example, ML techniques have been utilized to create models capable of distinguish-
ing cancerous tissues from normal ones, differentiating among cancer types or molecular
subtypes, and predicting cancer survival or recurrence [Li et al. 2022].

Various works argue that gene expression data are difficult to model due to
their high-dimensionality in comparison with the number of samples and possible non-
linearities [Mostavi et al. 2021, [Hanczar et al. 2022,|Alharbi and Vakanski 2023|]. These
challenges are particularly pronounced in the context of rarer cancer types and subtypes,
where limited sample sizes can hinder model performance. Consequently, various strate-
gies have been proposed to enhance the robustness of models in small-sample settings,
including transfer learning [Hanczar et al. 2022, Khorshed et al. 2020] and feature selec-
tion [Wang et al. 2022].

A well-established insight from biological research is that certain genes are impli-
cated across multiple cancer types. For example, the tumor suppressor gene TP53 is fre-
quently mutated in a wide array of cancers [Chen et al. 2022]. This observation suggests



that predictive models for specific cancer types could benefit from leveraging expression
levels of genes that are relevant markers of the same task across multiple types of can-
cer. For instance, in the task of distinguishing normal from tumorous tissue samples,
one might traditionally train a model exclusively on samples from the tissue of interest.
However, an alternative approach involves training a model on a diverse set of samples
from multiple cancer types, aiming to identify gene expression patterns that are broadly
applicable across cancers. Such patterns, supported by a larger and more diverse dataset,
could lead to more robust and accurate models.

Building on this idea, our work aims at improving model performance in small-
sample scenarios by incorporating data from all available cancer types during training.
Following prior studies [Hanczar et al. 2022], we refer to these models as pan-cancer (PC)
models, given that they are trained using data from multiple cancer types. We compare
the performance of PC models on specific cohort tasks with that of cohort-specific (CS)
models, which are trained only on data from a single cohort. In this study, we focus on
the task of distinguishing between normal and tumorous samples using neural networks
(NN), which have demonstrated state-of-the-art results in cancer prediction based on gene
expression data [Hanczar et al. 2022, Khalsan et al. 2022]].

We evaluate PC and CS models under two scenarios. In the first scenario, PC mod-
els are trained using data from multiple cohorts, including the CS dataset. As expected,
the PC models generally outperform their CS counterparts, with the extent of improve-
ment influenced by the size and class imbalance of the CS dataset. In the second scenario,
we exclude the CS dataset from the PC model’s training data and evaluate its performance
on that specific cohort. This allows us to assess the generalization capability of PC mod-
els to unseen cancer types. Notably, we find that in certain cases, PC models trained with
this approach inspired by few-shot learning can generalize well to new cohorts.

In summary, the contributions of this work are twofold: (i) We provide evidence
that NN-based PC models outperform CS models on the same tasks, offering a new strat-
egy to enhance performance on small gene expression datasets (Section {.1)); and (ii) We
demonstrate that NN-based PC models can, in some instances, successfully predict out-
comes in cohorts not seen during training (Section {.2))). While our experiments have
focused on NN, we expect that the insights and conclusions drawn in our experiments
may be applicable to other supervised learning algorithms.

2. Related Works

Our research focuses on cancer classification models using gene expression data, par-
ticularly addressing how to better utilize available data in scenarios with limited sam-
ples, aligning with few-shot learning methodologies [Wang et al. 2020]]. Specifically, we
concentrate on distinguishing between tumorous and normal samples (tumor prediction)
using cohorts of different cancer types.

Numerous studies have explored models for cancer genomics classification tasks.
Several have concentrated on comparing different models and neural network architec-
tures for specific tasks, such as tumor prediction, tissue-of-origin classification [Hanczar
et al. 2022]], and disease stage identification [Yu et al. 2019]. Common approaches in-
clude the use of (deep) NNs [Yu et al. 2019, Divate et al. 2022, Khalsan et al. 2022],
convolutional neural networks (CNNs) [[Mostavi et al. 2020, Mohammed et al. 2021],



graph neural networks (GNNs) [Ramirez et al. 2020.|Lee et al. 2020, Hayakawa et al.
2022[], and transformers [Zhang et al. 2022] for cancer-related gene expression tasks.
However, most of these works do not consider the integration of samples from different
cohorts to enhance predictions on separate cohorts, distinguishing their focus from ours.

More closely related to our work are studies that employ few-shot learning tech-
niques in the context of cancer genomics. Hanczar et al. [Hanczar et al. 2022] conducted
an extensive investigation into various forms of transfer learning between different types
of cancer, particularly comparing pan-cancer and cohort-specific models for tumor pre-
diction tasks. An earlier study by Khorshed et al. [Khorshed et al. 2020] also examined
transfer learning for cancer diagnosis. Our approach differs from these in that we do not
fine-tune the model on the target cohort. Instead, we train the pan-cancer model using
all available samples simultaneously and then evaluate its performance on individual co-
horts, including unseen ones. This strategy demonstrates that pan-cancer models can learn
generalized gene expression patterns that remain informative across multiple cohorts.

Another line of research has focused on metric learning models for distinguishing
among tissue types. Mostavi et al. [Mostavi et al. 2021]] developed a model using siamese
networks to learn a distance function between tissue samples, enabling one-shot learning
for cancer classification even when only a single sample is available. Metric learning has
also been applied to single-cell RNA-seq data to differentiate between cell types across
various experiments [Koh and Hoon 2021, Ma et al. 2022]. While these studies share
similarities with our work in differentiating classes that were not present during training,
our approach differs in that we aim to generalize a predictive model to different cohorts,
making predictions for an unseen class, rather than differentiating between unseen classes.

3. Materials and Methods

The following sections describe the data collection and pre-processing processes, the steps
involved in model training and evaluation, and our experimental approaches. Code and
data are provided in our public repositoryﬂ

3.1. Data Collection and Preprocessing

We obtained RNA-seq data for various cancer types from The Cancer Genome Atlas
(TCGA focusing on the analysis of gene expression profiles. Specifically, we retrieved
Fragments Per Kilobase of transcript per Million mapped reads Upper Quartile (FPKM-
UQ) normalized data through the Xena Browser [Goldman et al. 2020]] for each of the 33
available cancer cohorts. To ensure sufficient data for ML model training and validation,
we filtered the cohorts to include only those with at least 10 Primary Tumor samples and
10 Normal Tissue samples. This criterion led to the inclusion of 16 cohorts in our study.

For each cohort, we applied additional filtering to improve data quality. Genes
and samples with more than 20% missing values were excluded, following established
practices in similar studies [Duan et al. 2021,|Albaradei et al. 2021}, Chaudhary et al.
2018]]. To further reduce the dimensionality of the data and focus on biologically relevant
features, we retained only protein-coding genes by mapping them to their corresponding
peptide IDs using the STRINGdb APlﬂ The FPKM-UQ values were then subjected to a

Thttps://github.com/thomasvf/generalization-pc
Zhttps://www.cancer.gov/ccg/research/genome-sequencing/tcga
3https://string-db.org/cgi/help.pl ?subpage=api



logarithmic transformation to normalize the data and approximate a Gaussian distribution,
which is beneficial for many ML algorithms. After completing these preprocessing steps,
each sample in our final dataset contained expression values for 14,133 genes. Table
provides a summary of the number of examples for each cohort and sample type, with
cohorts abbreviated according to their TCGA study nameﬂ

Table 1. Number of examples from each cohort and sample type in the TCGA
pan-cancer datasets after the preprocessing.

Cohort  Primary Tumor ~ Solid Tissue Normal | Total

BLCA 411 19 430
BRCA 1097 113 1210
COAD 469 41 510
ESCA 161 11 172
HNSC 500 44 544
KICH 65 24 89

KIRC 533 72 605
KIRP 288 32 320
LIHC 371 50 421
LUAD 524 59 583
LUSC 501 49 550
PRAD 498 52 550
READ 166 10 176
STAD 375 32 407
THCA 502 58 560
UCEC 547 35 582
Total 7008 701 | 7709

3.2. Model Training

Given our objective to evaluate the generalizability of pan-cancer (PC) models for cohort-
specific (CS) predictions across both seen and unseen cohorts, we opted not to perform
a broad comparative analysis of different learning algorithms. Instead, we focused our
experiments on a 2-layer fully connected neural network, a learning algorithm that has
demonstrated state-of-the-art performance in gene expression tasks related to cancer pre-
diction [Hanczar et al. 2022}|Yu et al. 2019]].

Specifically, the NN architecture we employed consists of 256 hidden neurons,
followed by a ReLLU activation function, and a final sigmoidal output neuron that predicts
whether a given sample is tumorous. We utilized the AdamW optimizer [Loshchilov
and Hutter 2017], with hyperparameters tuned for each run and cohort through random
search with 8 iterations. The only hyperparameters tuned were the learning rate and the
weight decay of the optimizer. Given that gene expression data is generally imbalanced
and can easily lead to overfitting if not handled properly, the models were trained using a
weighted cross-entropy function. This variation of the cross-entropy increases the penalty
associated with mistakes of the minority classes in proportion to the inverse of their sizes.

“https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations



3.3. Experimental Approaches

We designed two experiments to assess the generalization capabilities of models trained
on multiple cohorts. The first experiment aimed to determine whether incorporating sam-
ples from additional cohorts (out-of-cohort samples) during training enhances the model’s
performance on a specific target cohort. For each target cohort, we first trained a PC
model using samples from all 16 cohorts on the task of distinguishing between tumor-
ous and normal samples (Figure [I}(a)). We then evaluated its performance on a test set
consisting solely of samples from the target cohort. We compared this performance with
that of a CS model trained exclusively on samples from the target cohort (Figure [T}(b)).
Both models were evaluated on the same test set, ensuring no overlap with the training
samples. This evaluation was repeated 16 times, with each cohort serving as the target
cohort in turn. We note that the PC model was consistent across all 16 evaluations.

11 BLCA
e—————
Neural Primary Tumor vs
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16| UCEC
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BRCA Network Normal Tissue
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Figure 1. In the out-of-cohort samples experiment, the training cohorts were used
for fitting the (a) pan-cancer and (b) cohort-specific models. Their performance
was compared on a test set composed only of target cohort samples (BRCA in
this example) to evaluate whether out-of-cohort samples improve the model per-
formance on a cohort-specific task.

In the second experiment, depicted in Figure [2, we evaluated whether the PC
model could generalize to cohorts not included in the training set, that is, to unseen co-
horts. This is inspired by the few-shot learning strategy that enables a pre-trained model
to generalize over new categories of data. We trained the PC model on 15 of the 16 avail-
able cohorts and tested it on a cohort left out during training, referred to as the target
cohort. This model’s performance was again compared with that of a CS model trained
solely on samples from the target cohort. Both models were tested on the same test set,
with no overlap between the test and training samples. This evaluation was repeated 16
times, with each cohort serving as the target in turn.

3.4. Performance Evaluation and Correlation Analysis

Both experiments were evaluated through 5-times repeated holdout and we focused pri-
marily on the macro-average Fl-score, which computes the average between the F1-
scores of each class in the task (in our experiments, the Tumor and Non-tumor classes).
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Figure 2. In the unseen cohorts experiment, for each of the available cohorts, we
trained a PC model using all samples but those of a specific target cohort. Then,
we evaluate this model only on samples belonging to the target cohort.

To draw conclusions about the effects of sample size and dataset imbalance on the scores,
we used the Pearson correlation coefficient. Furthermore, we computed the two-sided
p-value for the null hypothesis that a correlation as great as the ones observed could have
been obtained if the variables were not actually correlated. This value is computed based
on the probability density function of the correlation coefficient r obtained by assuming
that the two variables are normally distributed and independent. More details about its
computation can be found in scipy’s documentatiorﬂ

4. Results

In the following, we present the results obtained from the two experiments: the out-of-
cohort samples experiment and the unseen cohort experiment.

4.1. Out-of-Cohort Samples Experiment

Figure (3| shows the results of the first experiment, comparing the performance of the PC
model trained with all the available cohorts (blue bars) to that of CS models (orange
bars). The results of our experiments demonstrate that PC models generally outperform
CS models in predicting whether a tissue sample is tumorous or normal across a variety
of cancer cohorts. Specifically, the PC model achieved higher or equivalent F1-scores in
15 out of the 16 cohorts, with the most significant improvement observed in the ESCA
cohort, where the PC model outperformed the CS model by nearly 20%. This suggests
that integrating data from multiple cohorts can substantially enhance model performance,
particularly in cohorts with limited or imbalanced samples.

Shttps://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html



1.00 A
0.95 A
o 0.90
[*)]
o
(]
é 0.85
e
[}
©
2 0.80
—
w
4% 0.75
K
0.70
Model
0.65 BN Pan-cancer
I Cohort-specific
0.60 -
FEEREEEEEEEEEEER
= § o8 2% %333 8238 E§

Cohort

Figure 3. Test F1-score of the pan-cancer model trained using all 16 available
cohorts (blue bars) compared with the models trained only on the target cohort
(orange bars), per cohort. In all but one case, the performance of the pan-cancer
model was better than or equal to that of the cohort-specific.

Further analysis revealed that the STAD and READ cohorts also benefited from
the pan-cancer approach, showing Fl-score improvements of 7.3% and 5.6%, respec-
tively. In contrast, for the LIHC, LUAD, and UCEC cohorts, the performance of the PC
and CS models was identical, indicating that the inclusion of out-of-cohort data did not
provide a significant advantage in these cases. Interestingly, the KIRP cohort was the only
cohort where the CS model slightly outperformed the PC model, suggesting that in some
cases, a focused, cohort-specific approach may be more effective.

In all these cases, we can see that the variance of the scores was high for the CS
models, which led to an overall worst average result. This observation is made explicit
in Figure @} (a), where the mean performance gain for each cohort is shown against the
variance difference between the PC and CS model results. The two variables show a
Pearson correlation of 0.91 (p-value < 0.001). In three cases (LIHC, LUAD, and UCEC)
the performance was exactly the same for the PC and CS models, and for KIRP the CS
model performance was actually 1.2% higher. Interestingly, we observe that the variance
of the CS KIRP model was smaller than its variance with the PC model.

As discussed previously, we expected that the major gains of the PC approach
would come for datasets that have fewer samples and are more imbalanced. To evaluate
that, we computed the difference between the PC and CS Fl-scores for each run and
cohort and plotted them against the sample size and the imbalance ratio in Figures {}(b)
and [}(c), respectively. The imbalance ratio was calculated as the number of samples in
the majority class over that in the minority class. The Pearson correlation coefficients for
the sample size and class imbalanced were, respectively, —0.243 (p-value of 0.029) and
0.236 (p-value 0.035). This indicates that there is indeed a small but significant relation
between the benefit of using out-of-cohort samples and the size and imbalance of the
cohorts.
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Figure 4. Effect of variables of interest in the F1-score difference between the PC
and CS models. The mean F1-difference for each cohort is plotted against the
decrease in variance in (a), whereas the F1-difference for each run and cohorts
is plotted against the number of samples and the imbalance ratio in (b) and (c).

4.2. Unseen Cohorts Experiment

We present the F1-scores for the unseen cohort experiment in Figure[5] In this experiment,
the PC model was trained on all available datasets except for the target cohort, totaling
15 cohorts. This approach differs from the previous experiment, where the PC model
was trained using all cohorts. Results are provided in a decreasing order of performance
for the PC model, with the COAD cohort achieving the best result. Despite the exclu-
sion of the target cohort from the training set, the PC model exhibits strong performance
across various cancer types, including READ, HNSC, and BLCA. The fact that the model
maintains competitive F1-scores in these cases demonstrates its robust generalization ca-
pability, even under the few-shot learning paradigm. This is particularly notable because
it suggests that PC models can successfully transfer knowledge from related cancer types,
mitigating the challenges posed by limited or unseen data.
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Figure 5. Test F1-score of the pan-cancer model trained using all cohorts except
the target (blue bars) compared with the models trained only on the target cohort
(orange bars), per cohort, on the tumor prediction task.

Nonetheless, there are specific instances where the CS model performs clearly



better, as seen in the LIHC and PRAD cohorts. This suggests that in certain cancers,
the unique characteristics of the cohort may require more focused learning that a broad,
PC model might not fully capture. This variability highlights a limitation of the few-
shot learning approach when the target cohort has distinct features not well-represented
by other cohorts. Moreover, our results underscore the importance of understanding the
specific characteristics of the target cohort, as certain cancer types may benefit more from
a CS approach.

As before, we analyzed whether variations in performance correlated with factors
such as sample size, class imbalance, or changes in variance. However, no statistically
significant correlations were found, with Pearson correlation p-values of 0.627, 0.068,
and 0.285 for sample size, imbalance, and variance change, respectively. A more com-
pelling hypothesis is that the ability of the PC model to generalize to an unseen cohort
may depend on the anatomical and molecular similarity between the unobserved cohort
and those included in the training set. This is most evident in the COAD and READ co-
horts. COAD and READ, both types of colorectal cancer (CRC), share similar molecular
mechanisms and are anatomically close, as supported by the literature [Zuo et al. 2019].
In this experiment, the PC model achieved higher performance on COAD and READ
than the CS models, with results comparable to those obtained when both cohorts were
included in the PC model’s training set.

A similar pattern is observed with the kidney cancer datasets (KICH, KIRC, and
KIRP). KICH and KIRC, in particular, performed on par with the CS models, although
KIRP showed a slight drop in performance. Despite this, the PC model’s performance
remained competitive. Interestingly, in some cases, the PC model demonstrated strong
performance, even in the absence of training samples from any cohorts that are closely
related to the unobserved cohort. For example, models trained without HNSC and BLCA
still outperformed their cohort-specific counterparts, despite no obvious anatomical prox-
imity to other cohorts in the training set. However, for certain cohorts like LIHC and
PRAD, there was a noticeable decline in performance, indicating that the effectiveness of
the pan-cancer approach may vary depending on the specific characteristics of the unseen
cohort.

5. Discussion and Limitations

Our results provide compelling evidence that incorporating samples from diverse tissue
types can enhance performance in cohort-specific classification tasks and enable accurate
classification in new, unseen cohorts. This aligns with findings from other studies, which
have shown that transfer learning can significantly improve classification accuracy, par-
ticularly when the amount of available data is limited [Hanczar et al. 2022, Khorshed
et al. 2020]. By leveraging data from multiple cohorts, our approach offers a promising
strategy for building robust models from gene expression datasets that have few samples.

However, our study has several limitations that warrant discussion. Firstly, we
focused exclusively on the task of tumor prediction, specifically distinguishing between
normal and tumorous samples. While this is a critical task in cancer genomics, there are
other gene expression-based tasks that are equally important in clinical settings and could
benefit from a similar pan-cancer approach. For example, prognosis prediction, which in-
volves predicting survival outcomes, cancer recurrence, and metastasis identification, are



all clinically relevant tasks where the identification of biomarkers is crucial. Expanding
our methodology to these tasks could further validate the utility of pan-cancer models.

Another limitation of our study is that we used only RNA-seq data from TCGA.
While TCGA provides a rich and comprehensive dataset, it is important to explore
whether the same benefits can be observed when generalizing to more heterogeneous
data sources. For instance, would integrating TCGA data with datasets from the Gene
Expression Omnibus (GEOf] yield similar improvements?

Finally, in this paper we restricted our experiments to models based on NNs. Our
decision to focus exclusively on NNs stems from their proven effectiveness in handling
the high dimensionality and complexity of gene expression data. NNs are particularly
adept at capturing intricate patterns, which is essential for accurately distinguishing be-
tween normal and tumorous tissues. Additionally, NNs’ capacity to learn from large and
diverse datasets makes them well-suited for pan-cancer models. However, the underlying
principles and strategies we explore—such as leveraging pan-cancer data for enhanced
generalization—are not inherently dependent on this specific algorithm. We anticipate
that the insights gained from our study could be applicable to other supervised learning
algorithms as well, suggesting that the potential benefits of our approach may extend be-
yond NNs, with broader implications for the development of robust predictive models in
cancer genomics.

6. Conclusion and Future Work

In this paper, we dealt with the generalization capability of PC models. In particular, we
aimed at answering whether introducing samples from different cohorts improve cohort-
specific performance, and if the pan-cancer models were able to generalize to cohorts that
were not used in training. We obtained encouraging results in both cases. In particular,
we observed that the benefits for cohort-specific tasks were more substantial when the
original cohort contained fewer samples and was more imbalanced, even when correcting
imbalance using weighted cross-entropy. The PC models were also able to perform clas-
sification on unseen cohorts, specially when cohorts sharing the same tissue were used
to train the model. However, our results also underscore the importance of considering
cohort-specific characteristics when deciding between a pan-cancer and a cohort-specific
approach, as the benefits of broader data integration may vary depending on the specific
nature of the cohort.

Despite these results, there are some important questions that should be explored
in future work. Specifically, we hope to include a wider set of cohort-specific classifi-
cation tasks besides that of tumor prediction, and we wish to also analyze if our results
would also be true when trying to generalizing to and from more heterogeneous sources.
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