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Abstract. Gene fusions are abnormal genetic events often correlated with onco-
genesis. Hence, detecting them from RNA-seq data using bioinformatics meth-
ods is an important task in cancer research. Several tools have been developed
for this task, but current benchmarks are inconclusive regarding their accuracy
and are difficult to reproduce with new data. In this paper, we propose a com-
putational pipeline that gathers fusion detection tools and compares them using
standard classification metrics. It can also be used as an ensemble method to
detect gene fusions using several tools. This pipeline was applied to simulated
and real data, and supplements current benchmarks in the literature towards
aiding the users in choosing the tools for their analyses.

Resumo. Fusões gênicas são eventos genéticos anormais frequentemente cor-
relacionados com a oncogênese. Por isso, detectá-los a partir de dados de RNA-
seq usando métodos de bioinformática é uma tarefa importante na pesquisa
do câncer. Várias ferramentas foram desenvolvidas para esta tarefa, mas os
benchmarks atuais são inconclusivos quanto à precisão das mesmas e são
difı́ceis de reproduzir com novos dados. Neste artigo, propomos um pipeline
computacional que reúne ferramentas de detecção de fusão e as compara us-
ando métricas padrão de classificação. Este também pode ser usado como um
método agregado para detectar fusões gênicas usando diversas ferramentas.
Esse pipeline foi aplicado a dados simulados e reais, e complementa os bench-
marks atuais da literatura para auxiliar os usuários na escolha das ferramentas
para suas análises.

1. Introduction
A major characteristic of oncogenesis is the presence of chromosomal rearrangements
that often lead to gene fusions. A gene fusion occurs when previously separated genes
join together and form a hybrid gene with potentially altered function compared to the
original genes. This genetic event is an important biomarker to diagnose and treat var-
ious types of cancer. The detection of gene fusions from short-read RNA-seq data is a
well studied area, with dozens of tools published in the last decade. Several of them have
already been benchmarked in simulated and real data, and their results often agree in sim-
ulated data [Carrara et al. 2013, Liu et al. 2016, Kumar et al. 2016, Singh and Li 2021,
Creason et al. 2021, Haas et al. 2019]. For real data, however, most reviews and bench-
marks are inconclusive. Hence, a common approach that is employed is running a



number of tools and calling gene fusions based on a voting scheme, mostly by consen-
sus [LaHaye et al. 2021, Vicente-Garcés et al. 2023, Apostolides et al. 2021].

However, ensemble approaches rarely take into account the techniques employed
by each tool, and hence run the risk of losing fusions detected by the minority vote. In
addition, a tool’s performance may vary depending on the dataset, and choosing the best
tool for one’s data remains a challenge. Furthermore, as new tools are released, bench-
marks need to be updated. Some papers make available code to run their benchmarks, but
reproducing them with new data can be a difficult task because they were often designed
with the original data in mind.

In this paper, we propose a computational pipeline that gathers the top-
performing tools from previous benchmarks [Singh and Li 2021, Liu et al. 2016,
Haas et al. 2019]: Arriba [Uhrig et al. 2021], STAR-Fusion [Haas et al. 2019], Fusion-
Catcher [Nicorici et al. 2014], FuSeq [Vu et al. 2018], Pizzly [Melsted et al. 2017], and
ChimeRScope [Li et al. 2017]. We also included CICERO [Tian et al. 2020], a newer
alignment-based tool that leverages a local assembly subroutine to detect non canoni-
cal fusions, whose performance has not been assessed. The pipeline compares the tools
based on standard classification metrics and can also be used as an ensemble approach for
fusion detection, but allows the user to choose the set of tools for the analysis. We ap-
plied it to the simulated dataset used in the benchmark of [Haas et al. 2019] and to a real
dataset comprising several samples sequenced in a recent targeted RNA-seq experiment
at Boldrini Children’s Center [Migita et al. 2023].

2. Methods

2.1. Fusion detection software packages

Table 1 summarizes the fusion detection methods used in this study. We selected four
alignment-based methods — Arriba [Uhrig et al. 2021], STAR-Fusion [Haas et al. 2019],
FusionCatcher [Nicorici et al. 2014], and CICERO [Tian et al. 2020] — and three
alignment-free methods — FuSeq [Vu et al. 2018], Pizzly [Melsted et al. 2017],
and ChimeRScope [Li et al. 2017]. Notice, however, that FuSeq and Piz-
zly are not considered alignment-free: the former is based on quasi-mapping
from RapMap [Srivastava et al. 2016] and the latter on pseudo-alignment from
kallisto [Bray et al. 2016]. For the purpose of this study, we include them in this cate-
gory because both avoid the dynamic programming-based alignment step found in most
aligners.

The alignment-free methods share the idea of indexing the k-mers of a reference
transcriptome, in which the k-mers are associated with the genomic features (often tran-
scripts) they originated from. Raw reads are then classified as fusion supporting or not
based on their k-mer composition. On the other hand, alignment-based methods map
the reads against a reference genome to identify chimeric alignments that may indicate
a fusion event. The main signatures that are looked after are junction reads and span-
ning reads: the former occurs when a read maps to two different regions in the genome,
while the latter, in the case of paired-end reads, have each read map to a different region.
The presence of these signatures does not necessarily imply a gene fusion; hence, these
alignments undergo extensive filtering steps based on a number of heuristics to remove



artifacts and false positives. In the case of Pizzly and FuSeq, these signatures can also be
identified through their respective approaches.

Pizzly pseudoaligns reads against a reference transcriptome using kallisto and
flags spanning reads that may indicate a fusion event. FuSeq employs a similar approach,
but instead of pseudoalignment, it quasi-maps the reads against a reference transcriptome
using RapMap and then flags junction reads. In both methods, the selected spanning
reads are evaluated to filter false positives. ChimeRScope is a fully alignment-free tool
that identifies gene fusions by scoring the raw reads through k-mer counting. This score
is maximized when a read contains enough k-mers from distinct transcripts.

Arriba and STAR-Fusion are alignment-based tools that have been consolidated
as the top-performing in most simulated short-read RNA-seq datasets [Haas et al. 2019,
Creason et al. 2021, Singh and Li 2021]. Both optimize the parameters of the STAR
aligner [Dobin et al. 2013] so that alignments of junction reads and spanning reads are
reported. These alignments then undergo extensive filtering steps to remove artifacts
and false positives [Uhrig et al. 2021, Haas et al. 2019]. Arriba, in particular, employs
multiple knowledge-based filters, including a blacklist that the user provides contain-
ing artifacts to be ignored [Uhrig et al. 2021]. FusionCatcher employs a similar strat-
egy, but, in addition to STAR, it also uses Bowtie2 [Langmead and Salzberg 2012] and
BLAT [Kent 2002], although the user is able to skip STAR or BLAT.

CICERO is a newer alignment-based tool that also uses the STAR aligner to iden-
tify chimeric alignments for downstream analysis [Tian et al. 2020]. In addition to the
conventional alignment step, it also locally assembles a subset of soft-clipped reads us-
ing CAP3 [Huang and Madan 1999] and maps them against the reference genome us-
ing BLAT [Kent 2002]. It has been reported that this subroutine improves accuracy
and allows the detection of non canonical fusion events not detectable by other meth-
ods [Tian et al. 2020].

2.2. Simulated dataset

We used simulated data generated by the Fusion Transcript Simulation
Toolkit1 [Haas et al. 2019]. It consists of 10 datasets, 5 with paired-end reads of length
50bp (available at https://zenodo.org/records/13354907) and 5 with
paired-end reads of length 101bp (available at https://zenodo.org/records/
13359589). All of them have 500 fusions known and annotated beforehand.

2.3. Targeted RNA-seq dataset

We assessed fusion prediction accuracy using real data from a targeted RNA-seq ex-
periment comprising a cohort of B-cell precursor acute lymphoblastic leukemia (BCP-
ALL) cases [Migita et al. 2023]. Most BCP-ALL can be classified into well-known
subtypes based on the presence of characteristic rearrangements, e.g. translocation be-
tween chromosomes 9 and 22, resulting in the gene fusion BCR-ABL1. These are
referred to as classical BCP-ALL, and account for approximately 70% of BCP-ALL
cases [Migita et al. 2023]. The remaining 30% are called “B-other” because they do not
have the characteristic rearrangements at diagnosis, and the underlying driver events were

1https://github.com/FusionSimulatorToolkit/FusionSimulatorToolkit/
wiki

https://zenodo.org/records/13354907
https://zenodo.org/records/13359589
https://zenodo.org/records/13359589
https://github.com/FusionSimulatorToolkit/FusionSimulatorToolkit/wiki
https://github.com/FusionSimulatorToolkit/FusionSimulatorToolkit/wiki


Table 1. Fusion detection tools for short-read RNA-seq data.

Tool Overview

Arriba [Uhrig et al. 2021] STAR is used to map reads against a refer-
ence genome, followed by application of ex-
tensive knowledge-based filters to the result-
ing alignments to remove artifacts and false
positives.

STAR-Fusion [Haas et al. 2019] STAR is used to map reads against a refer-
ence genome, filters are applied to the re-
sulting alignments and richer annotations are
added.

FusionCatcher [Nicorici et al. 2014] Reads are mapped against reference genome
using Bowtie2, STAR, and BLAT aligners.

CICERO [Tian et al. 2020] STAR is used to map reads against a refer-
ence genome; a subset of soft-clipped reads
are assembled into contigs by CAP3, which
are mapped against the reference by BLAT
to find non canonical fusions.

FuSeq [Vu et al. 2018] Reads are quasi-mapped against a reference
transcriptome using RapMap; then, fusion
supporting reads ensue statistical tests for fil-
tering.

Pizzly [Melsted et al. 2017] Reads are pseudo-aligned against reference
transcriptome using kallisto.

ChimeRScope [Li et al. 2017] Alignment-free approach that indexes the k-
mers of the reference and identifies fusion
events through fingerprints in the raw reads.

(until recently) unknown [Migita et al. 2023]. The dataset we used comprises 40 samples
of classical BCP-ALL and 47 samples of B-other BCP-ALL.

Due to space constraints, we show results for a subset of the samples, namely,
31/40 classical samples and 17/47 B-other samples. In the extended version of this paper,
we will show results for the full set. The classical samples are divided into three groups
according to the following defining gene fusions: TCF3-PBX1 (3), ETV6-RUNX1 (24),
and BCR-ABL1 (4). The same applies to the B-other samples, but by using the follow-
ing (recently described) gene fusions: ZNF384-rearranged (9), MEF2D-rearranged (4),
and NUTM1-rearranged (4). Different from the classical samples, the genes ZNF384,
MEF2D, and NUTM1 in the B-other samples can have several partners. In particular,
[Migita et al. 2023] discovered novel gene partners for ZNF384 (NCOA3-ZNF384, SPI1-
ZNF384), MEF2D (MEF2D-PYGO2), and NUTM1 (KAT6A-NUTM1), whose samples (4



of the 17 samples, one for each gene partner) were included in this study. All those fu-
sions were validated, and for each of those groups, we used them as ground truth for their
respective samples. We note, however, that some tools might have identified other fusions
not validated in vitro, and these were not taken into account.

2.4. Data analysis

The experiments were run on a machine running Ubuntu version 22.04 with a 2.10 GHz
Intel(R) Xeon(R) Silver 4110 CPU (32 cores) and 132GB of RAM. The tools shown in
Table 1 were executed with parameters recommended by the respective authors, includ-
ing STAR parameters (STAR is used by all alignment-based tools). It was not possible
to reuse a single execution of STAR for all these tools, because each tool has different
recommended parameters for it, with the exception of CICERO; hence, we used Arriba’s
STAR parameters for it. For the alignment-based tools, read mapping was done against
reference genome GRCh38, except for CICERO, for which we mapped the reads against
the reference genome GRCh37. Although its documentation states that it is compatible
with GRCh38, we faced operational issues to run CICERO with this version, while with
GRCh37 all the analyses ran smoothly. As for the alignment-free tools, we used the cor-
responding transcriptome reference GRCh38.

After the fusion calling step, we gathered the output of all tools, specifically the
fusion calls and the number of supporting reads (SR) for those predictions. The notion
of SR varies depending on the tool, but most of them report the number of junction and
spanning reads that support a prediction. Recall that Pizzly and FuSeq count just one of
these quantities. Thus, we consider the sum of junction and spanning reads as the number
of SRs for a given prediction, when both are available; otherwise, we use one of the two
according to the tool at hand.

After parsing the output of the tools, we mapped the gene coordinates to the
GRCh37 reference standard following the Gencode v19 [Frankish et al. 2022] annota-
tion set so that the coordinates were consistent. This allows a more amenable com-
parison among tools because many of them come with their own bundle of annotation
resources. Then, we enriched the annotations of the gene fusions using FusionAnno-
tator [Haas et al. 2023], which adds metadata as provided by several databases. These
include whether a gene is an oncogene, whether the fusion is interchromosomal or in-
trachromosomal, the encoded protein, etc, which are useful for downstream analysis and
validation of the predictions. The next step leverages this enriched annotation to filter
gene fusions of ambiguous origin, such as neighbor genes or genes of mitochondrial ori-
gin.

Finally, we measured the accuracy of the tools using the metrics recall and preci-
sion, defined as follows:

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
.

(TP , FP , and FN are, respectively, the number of true positives, false positives, and false
negatives.) These metrics are adequate for measuring gene fusion detection because one
needs to take into account both TP and FP fusions reported by a tool. In this context,
recall measures the proportion of correctly detected fusions with respect to all fusions



present in a dataset, while precision measures the proportion of correctly detected fusions
with respect to all fusions retrieved by a tool. The desirable behavior of an accurate fusion
detection method is to maximize both recall and precision. For each dataset with its
accompanying ground truth fusions, we ran each tool and computed the Precision-Recall
curve (with recall in the x-axis and precision in the y-axis) along with its area under the
curve (AUC). The threshold used was the minimum number of supporting reads to call the
fusions. As this threshold is decreased, a tool with good overall performance will report
more fusions without necessarily harming the AUC.

We summarize these results for simulated and real data in Sections 3.2 and 3.3,
respectively. All the steps described were incorporated in a computational pipeline (Sec-
tion 3.1) that automates the data analysis. It parses the fusion calls of each tool in a
standardized format for downstream analysis and compares the tools based on the metrics
described.

3. Results
3.1. Computational pipeline
We developed a pipeline that incorporates many steps used in the benchmark
of [Haas et al. 2019], but with important differences. It consists of a set of modules
that perform well-defined tasks using standard utilities available in UNIX environments.
Specifically, each module consists of a Makefile that automates a step in the pipeline.
The make program allows one to work upon previous analyses without rerunning them
by automatically handling dependency management. For reproducibility, we also provide
Dockerfiles that encapsulate the environments to run the tools and scripts to build them.

Figure 1 depicts a diagram of the pipeline in which each square represents a mod-
ule numbered by their order of execution. We refer to the numbering in the squares to
explain how each module was implemented:

(1) Each fusion detection tool (Table 1) has a dedicated Makefile to orchestrate its
execution. These can also serve as standalone scripts to automate a fusion calling
analysis with a single tool.

(2) Each fusion detection tool has an associated script that processes its output and
collects the predictions and the number of reads supporting those predictions.
These results are gathered in a standardized format for further processing.

(3) Fusion partners are mapped to the GRCh37 reference standard fol-
lowing the Gencode v19 annotation set. The gene coordinates are
freely available at https://github.com/fusiontranscripts/
FusionBenchmarking/tree/master/resources. The mapping is ef-
ficiently computed through an interval tree as implemented by [Haas et al. 2019].

(4) Fusions are annotated by the software FusionAnnotator, which enriches the anno-
tations with metadata for downstream analysis.

(5) We consider ambiguous fusions those whose genes are neighbors, are sequence-
similar, have a gene of mitochondrial origin, or an HLA gene. These can be
discarded in this step or carried on. At this point, the pipeline also fulfills the role
of an ensemble detection tool.

(6)-(7) These modules are specialized for plotting and measuring run-time. We modi-
fied scripts from [Haas et al. 2019] and implemented some of our own to plot PR
curves and compute their AUC.

https://github.com/fusiontranscripts/FusionBenchmarking/tree/master/resources
https://github.com/fusiontranscripts/FusionBenchmarking/tree/master/resources


Figure 1. Computational pipeline to detect fusions and benchmark tools. Each
square represents a module, the white circle represents the starting point, and
filled circles represent ending points. The blue modules, from steps (1) to (4)-
(5), constitute an ensemble gene fusion detection pipeline, which may include
step (5) for filtering. Green modules add the benchmark utilities that score the
tools and plot the results. For the sake of example, the modules are labelled
with a simplified view of their outputs for the fusion ZNF384-NCOA3 retrieved by
Arriba.

3.2. Performance on simulated dataset
Figure 2 depicts the AUC of the PR curves computed for each tool after running on each
group of datasets (paired-end reads of length 50bp and 101bp). We noticed that read
length affected the performance of all tools, although the alignment-free ones proved
to be less sensitive to read length. Since longer reads carry more information, it is ex-
pected that any tool would produce better results with increased read length. Overall,
the alignment-based tools FusionCatcher, STAR-Fusion, and Arriba had superior perfor-
mance. However, FusionCatcher demands significantly more computational resources
when compared to STAR-Fusion and Arriba: the former performs multiple alignment
steps (see Table 1), while the latter produces comparable results with a single alignment
step.

Although the accuracy of CICERO greatly improved with increased read length,
it was the worst performer among the alignment-based methods. We noted that the local
assembly subroutine benefits the recall of CICERO, but hampers its precision because
many false positives are generated. The discrepancy in accuracy between the two groups
of datasets is most likely due to the degradation of the assembly routine of CAP3 in shorter
reads.

We remark that, although the alignment-free tools performed worse than the
alignment-based ones, their execution time is far better. In our experiments, the pro-
cessing of many datasets finished in the order of minutes, while with the alignment-based
ones, most took hours. In this regard, Pizzly is the best performer because all of its analy-
ses did not take more than 1 hour. Here, we do not take into account the execution time to



Figure 2. Area under the curve of PR curves for each tool.

build the indexes used by the tools, which is a one-time endeavor. Finally, a drawback we
observed with ChimeRScope is the excessive memory peak it requires (≈ 40GB), which
can impair its usage in commodity hardware.

3.3. Performance on targeted RNA-seq dataset

Figures 3 and 4 depict the average AUC of the tools after running on the classical and
B-other samples, respectively. FusionCatcher, STAR-Fusion, and FuSeq were the best
performers, while CICERO was the worst.

Figure 3. Classical samples. Figure 4. B-other samples.

CICERO retrieved all relevant gene fusions, but also many others with higher ev-
idence that we did not consider as true positives. In addition, for a gene X, we noticed



that many fusions were of the form X-X, which suggests that they are actually pseudo-
genes. These were not validated in vitro, and for the moment were considered false posi-
tives. Again, this indicates that the local assembly subroutine hampers precision, although
helpful to discover non canonical fusions.

In contrast to its accuracy on the simulated dataset, FuSeq performed remark-
ably well in real data. Although it was the worst performer in our simulated data com-
pared to the other alignment-free tools, [Singh and Li 2021] reported that FuSeq was a
top-performer in their comprehensive review. On the other hand, ChimeRScope was con-
sistently behind the other alignment-free tools in our experiments and in the benchmark
of [Singh and Li 2021]. Finally, the results we obtained with Pizzly were consistent with
what has been reported previously [Haas et al. 2019, Singh and Li 2021].

Regarding the novel gene partners in the B-other samples, we remark that all tools
retrieved the relevant fusions, except for FusionCatcher who missed the SPI1-ZNF384
fusion.

4. Discussion
A noteworthy pattern we observed in the results is that most gene fusions retrieved by
alignment-free tools are true positives, but they often miss other true positives in the
dataset. Alignment-based tools, on the other hand, are able to retrieve most true positives,
but they also produce many false positives. This is a known limitation of alignment-based
methods: due to the aberrant nature of cancer genomes, aligners often produce spurious
alignments when mapping these genomes reads against a reference if one does not fine-
tune the parameters.

Hence, a fruitful strategy is to perform a first round of fusion calling with
alignment-based tools followed by a second round with alignment-free tools to pinpoint
potential false positives and validate the true positives from the first round. This is a cheap
heuristic because alignment-free tools often have fast execution time. Notice, however,
that this does not eliminate validation in a wet lab. We also remark that the alignment-
free tool FuSeq had excellent accuracy in our real dataset and requires considerably less
computational resources compared to STAR-Fusion. The notable performance of FuSeq
has also been reported in a recent review [Singh and Li 2021].

The current version of the pipeline has some limitations. First, adding new tools
is a nontrivial task that requires programming knowledge, although done in a few steps:
one has to write a wrapper script and an output parser for the tool at hand. As for the
current tools, we expect that they will remain compatible with the pipeline as long as
their output format and command line interface does not change. Second, our ensemble
approach for fusion detection is naive compared to other pipelines that perform a similar
task [LaHaye et al. 2021, Vicente-Garcés et al. 2023, Apostolides et al. 2021]: we do not
apply a consensus algorithm, but rather keep all the retrieved fusions in a standardized
format. Third, the pipeline lacks a run-time and space usage measurement feature, but we
will include this functionality for an extended version of this paper.

5. Conclusion
In this paper, we presented a computational pipeline to compare different fusion detection
methods for short-read RNA-seq data. It can be used as an ensemble fusion detection



tool and its application to simulated and real data supplements current benchmarks in the
literature. In our benchmark, STAR-Fusion was the top-performer in both the simulated
and real datasets, while CICERO was the worst. We concluded that the poorer accuracy
of the latter was mostly due to its local assembly subroutine, which can be helpful to
detect non canonical fusions, but increases the number of false positives. This downside is
aggravated with shorter reads as shown in our experiment with simulated data. In addition,
we noticed that alignment-free tools exhibited superior precision and faster execution
time, which suggests that they can be used separately to complement alignment-based
tools for fusion calling.

Future research directions for this work include adding more tools to the pipeline
and extending the experiments to more real cancer cell lines. Toward this end, our group
is currently working to extend the experiments to include the entirety of our targeted
RNA-seq dataset and also to other bulk RNA-seq datasets.
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