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Abstract. This study aims to develop and evaluate optimized neural networks,
including Multilayer Perceptrons (MLP) and Convolutional Neural Networks
(CNN), by employing deep learning techniques to classify breast cancer sub-
types, based on gene expression data. By implementing different neural network
architectures and optimization strategies, this research seeks to determine the
accuracy and efficiency of these classification methods. Data is sourced from
The Cancer Genome Atlas (TCGA) repository and undergoes preprocessing, in-
cluding dimensionality reduction, to prepare it for analysis. The contribution
is to enhance diagnostic tools, as well as assess the predictive performance of
the approaches. The comparison of networks performance presents a promis-
ing pathway to enhancing the precision of medical diagnostics and personalize
treatment strategies in breast cancer.

Resumo. Este estudo tem como objetivo desenvolver e avaliar redes neu-
rais otimizadas, incluindo Perceptrons Multicamadas (MLP) e Redes Neurais
Convolucionais (CNN), empregando técnicas de aprendizagem profunda para
classificar subtipos de cancer de mama, com base em dados de expressdo
génica. Ao implementar diferentes arquiteturas de redes neurais e estratégias
de otimizacdo, este trabalho busca determinar a acurdcia e a eficiéncia desses
métodos de classificacdo. Os dados sdo provenientes do repositorio Atlas
do Genoma do Cancer (TCGA) e passam por pré-processamento, incluindo
reducdo de dimensionalidade, a fim de prepard-los para andlise. A contribuicdo
é aprimorar as ferramentas de diagndstico, bem como avaliar o desempenho
preditivo das abordagens. A comparacdo dos resultados das redes apresenta
um caminho promissor para aumentar a precisdo dos diagndsticos médicos e
personalizar as estratégias de tratamento do cancer de mama.



1. Introduction

Breast cancer (BC) is a neoplastic condition characterized by the formation of a malig-
nant tumor originating in breast cells. It is the most prevalent type of cancer among
women. More than 2.3 million new cases of breast cancer are recorded annually, mak-
ing it the most common type of cancer among adults. In 95% of countries, breast
cancer ranks as the first or second leading cause of cancer-related deaths in women.
However, breast cancer survival varies significantly between and within countries; ap-
proximately 80% of breast and cervical cancer deaths occur in low- and middle-income
countries[ World Health Organization 2023].

Early detection of BC can reduce both the financial burden on healthcare sys-
tems and families, as well as the mortality rate associated with the disease. Therefore,
investing in early breast cancer screening and diagnosis, including mammography, ultra-
sound, magnetic resonance imaging, and biopsies, is ideal. Studies suggest that regular
mammography screening programs can lead to a reduction in BC mortality rates. How-
ever, traditional breast cancer detection methods face challenges such as the complexity
of mammographic images and the potential for false negatives due to difficulties in iden-
tifying patterns in the early stages of the disease [Ministério da Saide 2024].

Recently, deep learning models have been explored for breast cancer detection,
showing promising results. These models can learn complex hierarchical features, in-
creasing the sensitivity and specificity of cancer detection, thereby aiding in early di-
agnosis. Additionally, the use of deep neural networks can reduce reliance on highly
specialized professionals, allowing for the automation of part of the diagnostic process,
for example [Sait and Nagaraj 2024]. Techniques such as transfer learning, which adapts
pre-trained models to new tasks, have shown potential for improving diagnostic accuracy
with limited resources.

In the literature, many studies have been adopting Neural Networks to clas-
sify BC [Turgut et al. 2018, Tewari et al. 2022, Rabiei et al. 2022, Wu and Hicks 2021,
Iparraguirre-Villanueva et al. 2023, Sait and Nagaraj 2024]. In this context, this study
employs MLP and CNNs to classify subtypes of breast cancer based on gene expres-
sion data. Although CNNss are traditionally used for image recognition tasks, they can be
effectively adapted to handle high-dimensional biological data such as gene expression
profiles [Lopez-Garcia et al. 2020].

In this context, the objective of this study is to develop and evaluate optimized
neural networks, specifically MLP and CNNs, using deep learning techniques for the
classification of breast cancer subtypes based on gene expression data. The study aims to
enhance the accuracy and efficiency of subtype classification, contributing to the devel-
opment of more precise diagnostic tools and personalized treatment approaches in breast
cancer care. To this end, the advanced feature extraction capabilities offered by deep
learning will be explored, with the application of the Optuna algorithm for model opti-
mization, as well as a comparative analysis without the use of this method.

2. Materials and Methods

This section presents the methodology proposed in this study to perform the classification
multiclass breast cancer, using gene expression data and neural networks modeling.



2.1. Methodological Path

The methodological path adopted for this study is presented in Figure 1. The raw data
coming from the renowned TCGA! repository contains information such as the number
of rows and columns, the classification type and class labels. The columns represent the
features, that is, the input variables for the classification task.
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Figure 1. The methodological approach of the study.

The TCGA database consists of renowned repositories of gene expression data,
where specific criteria are applied to identify breast cancer samples using the array ex-
pression profiling technique. The data generated is real and is publicly available to the
scientific community. To extract the data, the “GEOparse” library in the Python language
was used, followed by data merging and column organization. The database presents 935
samples (rows) and 14.410 features (colums). The last column contains 5 output classes,
which represent the subtypes of breast cancer: Basal, Her2, LumA, LumB, and Normal
(no cancer); therefore, this study presents a multiclass classification task.

After the data acquisition, the following step is the preprocessing. The missing
data was treated and the cleaning process was executed, which resulted in the identifica-
tion of outliers and values outside a certain scale, making data normalization necessary,
using z-score [Kreyszig 2010]. This way, it is possible to prevent a characteristic with
very high values from having a disproportionate weight or contribution in the analysis.
The preprocessing step is essential to ensure that the dataset is ready for the modeling
step.

In addition, due to the nature of gene expression data (which generally has more
columns than rows), it was necessary to apply a dimensionality reduction method, such
as the Principal Component Analysis (PCA) technique [Rencher 2002, Timm 2002]. In
PCA, principal components are created in such a way that they are uncorrelated each other
and capture most of the variance present in the original data. They are used to identify and
interpret dependencies between variables, in addition to examining relationships that may
exist between individuals [Johnson and Wichern 2007]. In the context of this study, this
technique also improves the performance of statistical modeling tasks and the classifiers

Thttps://www.cancer.gov/ccg/research/genome-sequencing/tcga



performance. Considering the preprocessing data executed, the next step, as illustrated in
Figure 1, is the neural networks structures, described in Sections 2.2 and 2.3.

2.2. Multilayer Perceptron

In this study, a MLP model is employed to classify subtypes of breast cancer. The MLP is
a type of feedforward artificial neural network consisting of an input layer, multiple hid-
den layers, and an output layer. Each neuron in a layer is connected to every neuron in the
subsequent layer, creating a fully connected network [Aggarwal 2015]. The availability
of a learning scheme is the backpropagation, which trains the entire network hierarchi-
cally. This architecture, shown in Figure 2.2 allows the model to learn complex patterns
and relationships in the data, making it suitable for tasks such as multiclass classification.
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Figure 2. MLP Network Architecture for Classification [Aggarwal 2015]

The input layer consists of neurons that receive the raw gene expression data.
Each neuron in this layer corresponds to a feature or gene from the dataset. MLPs have
one or more hidden layers between the input and output layers. These layers consist of
neurons that process the inputs from the previous layer. Each neuron applies a weighted
sum of its inputs, followed by an activation function. The hidden layers capture complex
patterns and interactions between genes that are relevant for classifying breast cancer
subtypes. The number of hidden layers and the number of neurons per layer can vary and
are chosen based on the complexity of the data and the problem.

Common activation functions used in MLPs include the ReLLU (Rectified Linear
Unit), sigmoid, and tanh functions. The output layer consists of neurons that provide the
final classification result. In the case of breast cancer subtype classification. A softmax
activation function is often used in the output layer to normalize the outputs into proba-
bilities that sum to one, making it easier to interpret the results.

These elements work together to enable MLPs to learn and classify complex pat-
terns in gene expression data, making them suitable for identifying breast cancer subtypes
based on molecular characteristics.

2.3. Convolutional Neural Network

The CNN is a multilayer perceptron made of numerous layers where each layer is a non-
linear feature detector performing local processing of contiguous features within each



layer, leading to higher conceptual representation as information moves up to the output
layer [Aggarwal 2015]. It is considered as the first successful implementation of a deep
architecture that exploits prior knowledge [LeCun et al. 1995, LeCun et al. 1998].

The CNN’s weight space is sparse as each unit in a layer only selectively takes
input from a subset of contiguous neurons in the lower layers. By leveraging the local
connectivity and weight-sharing properties of CNNs, the approach of this work aims to
capture complex patterns and interactions among gene expressions that are indicative of
different breast cancer subtypes.

Convolutional Layers are the core building blocks of CNNs. They apply a set of
filters (or kernels) across the input data to extract features. The filters slide over the input,
performing a dot product between the filter and patches of the input data. This operation
results in a feature map that highlights specific patterns [LeCun et al. 1995, Chollet 2021].

After convolution operations, an activation function is applied element-wise to
introduce non-linearity into the model. The most commonly used activation function
in CNNs is the ReLLU, which replaces all negative values in the feature map with zero,
helping the model learn more complex patterns [LeCun et al. 1998].

Towards the end of the network, the high-level reasoning is performed by Dense
layers. These layers take the flattened output of the previous layers and connect every
neuron to every neuron in the previous layer. They help combine features learned by
earlier layers to classify the input or make predictions [Chollet 2021].

Finally, the Output layer is typically a dense layer with a specific number of neu-
rons that corresponds to the number of output classes. The softmax activation function is
often used in the output layer to convert the raw output into probabilities, indicating the
likelihood of each class.

2.4. Hyperparameter Optimization

Classification model hyperparameters have a significant effect on performance of learn-
ing algorithms, since hyperparameter tuning is a critical step in improving the perfor-
mance of the classification models [Wu et al. 2019, Yang and Shami 2020]. In this way,
a new set of design criteria for optimization frameworks, called “Optuna,” is proposed
[Akiba et al. 2019]. It is an open-source hyperparameter optimization framework that
features define-by-run programming, which provides flexibility in the optimization pro-
cess, efficient sampling algorithms and pruning that improve adaptability and a versatile,
easy-to-configure architecture.

In this study, Optuna was employed to optimize the hyperparameters of MLP and
CNN models. By systematically exploring the hyperparameter space, Optuna helps iden-
tify the optimal set of hyperparameters that lead to the best model performance.

Optuna uses a state-of-the-art optimization algorithm known as Tree-structured
Parzen Estimator (TPE), which efficiently navigates the hyperparameter space by con-
structing probabilistic models of promising hyperparameter configurations. Optuna also
supports pruning of unpromising trials, allowing faster convergence by halting trials that
are unlikely to yield optimal results.

For the MLP model, the hyperparameters optimized by Optuna are: the number



of Hidden Layers (between 1 and 5), number of neurons in each hidden layer (from 32
to 256), learning rate (from 0.0001 to 0.1), batch size (from 16 to 128) and dropout rate
(between 0.0 and 0.5, to prevent overfitting).

Similarly, for the CNN model, Optuna was used to optimize the number of convo-
lutional layers (between 1 and 4), number of filters (from 32 to 256), Kernel size, learning
rate (from 0.0001 to 0.1), batch size (from 16 to 128) and dropout rate (between 0.0 and
0.5).

Optuna conducted the optimization by running a certain number of trials and ex-
ploring different combinations of hyperparameters to identify those that maximize the
model’s performance. Optuna returns the best parameters found for each model. These
parameters represent the settings that, within the 10 trials, provided the best average ac-
curacy.

2.5. Evaluation Metrics

In order to train and test the performance of the models, the datasets were divided into
training and testing sets, assigning 80% of the data to the training and 20% to the testing
phase, according to Pareto distribution. After that, the cross-validation [Aggarwal 2015]
was performed using k-fold method, with k=10 folds. The performance evaluation of the
classification models was conducted by using well known statistical measures, confusion
matrix, accuracy and cross-validation [Aggarwal 2015, Bishop 2006].

In this work, version 3.11 of Python was used as the programming language, due
to its efficiency and performance. In all analyses, a fixed significance level of 5% was
adopted. The Python scripts used for this study are available on GitHub. The repository
can be accessed via the following link: https://github.com/leonardocir/
ppgbioinfo.

3. Results and Discussion

This section presents the findings of the study, highlighting the performance of MLP and
CNN neural network architectures when applied to datasets from the TCGA repository.
A comparative performance analysis is also provided, utilizing statistical metrics for eval-
uation.

The TCGA database originally consists of 935 rows and 14,408 columns. How-
ever, after applying the PCA technique, the size of the database was reduced to 935 rows
and 184 columns, selecting the columns (genes) that have the greatest influence on the
classification of breast cancer subtypes [Johnson and Wichern 2007].

The MLP architecture employed in this study consists of one input layer, four
hidden layers, and one output layer. The input layer size corresponds to the number of
features in our dataset, which includes gene expression profiles relevant to breast cancer
subtypes. The hidden layers are composed of 100, 75, 50, and 25 neurons, respectively,
with each layer utilizing a ReLLU activation function. The output layer contains a num-
ber of neurons equal to the number of breast cancer subtypes, with a softmax activation
function to provide probabilities for each class.

The CNN used in this study consists of two convolutional layers with 32 and 64
filters, respectively. Each convolutional layer employs a 3x3 kernel size with a stride



of 1 and ‘same’ padding. After each convolutional layer, ReLU activation functions are
applied. MaxPooling layers follow the convolutions to reduce dimensionality and capture
important features. The model also includes a fully connected dense layer with 64 units
and ReL.U activation, followed by a dropout layer with a 50% rate to prevent overfitting.
The final output layer applies a softmax activation function to provide class probabilities.
Cross-validation with five folds is performed, and the model is trained with the Adam
optimizer and sparse categorical cross-entropy as the loss function.

Table 1 presents the performance metrics of the MLP and CNN models before
hyperparameter optimization using Optuna, providing a baseline for comparison.

Table 1. Performance of neural networks architectures: a) MLP b) CNN

Multilayer Perceptron without Optuna Convolutional Neural Network without Optuna
Precision Recall F1-Score Precision Recall F1-Score
LumA | 0.78 0.89 0.83 LumA | 0.73 0.76 0.74
Lum B 0.64 0.51 0.57 Lum B 0.37 0.47 0.41
Basal 0.75 0.77 0.76 Basal 0.83 0.83 0.83
Her 2 0.62 0.38 0.47 Her 2 0.83 0.33 0.48
Normal | 0.50 0.75 0.60 Normal | 0.00 0.00 0.00
Accuracy (test) 0.7273 Accuracy (test) 0.6952
Accuracy (cross-validation) | 0.7498 Accuracy (cross-validation) | 0.7046
a) b)

In Table 1, it is important to highlight the values of the statistical measures that
demonstrate the good performance of the multiclass classification for the considered
breast cancer subtypes. For the MLP network architecture, the accuracy on the test set
is 0.7273, and the accuracy using cross-validation is 0.7498. For the CNN architecture,
the accuracy is 0.6952, and the accuracy using cross-validation is 0.7046. These results
underline the effectiveness of the models in accurately classifying the breast cancer sub-
types. The other statistical measures presented in the table further support this statement.

In order to better understand the classification performance, Figure 3 shows the
confusion matrices for the MLP and CNN models without optimization. These matrices
highlight the distribution of correct and incorrect predictions, indicating where the models
may struggle.
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Figure 3. Confusion Matrix

A hyperparameter optimization method was used to fine-tune the MLP and CNN
models, applying the Optuna library to determine the best parameters. For the CNN, the



optimal configuration includes two convolutional layers with 55 filters in each layer, a
kernel size of 4x4, and a pooling size of 2. The dense layer has 128 units, followed by a
dropout rate of approximately 45%. The model was trained for 20 epochs. For the MLP,
the best configuration found includes three hidden layers with 138, 97, and 25 neurons,
respectively, all using ReLLU activation. The model was trained with the Adam optimizer,
an alpha value of 0.043, and an initial learning rate of 0.0074.

Table 2 shows the performance metrics for both neural networks architectures after
applying Optuna optimization, demonstrating significant improvements compared to the
baseline.

Table 2. Performance of neural networks architectures using Optuna: a) MLP b)

CNN
Multilayer Perceptron with Optuna Convolutional Neural Network with Optuna
Precision Recall F1-Score Precision Recall F1-Score
LumA | 0.85 0.91 0.88 LumA | 0.75 0.91 0.82
Lum B 0.68 0.63 0.66 LumB | 0.68 0.51 0.58
Basal 0.93 0.87 0.90 Basal 0.88 0.94 0.91
Her 2 0.69 0.52 0.59 Her 2 0.69 0.43 0.53
Normal | 0.29 0.50 0.36 Normal | 1.00 0.25 0.40
Accuracy (test) 0.7914 Accuracy (test) 0.7594
Accuracy (cross-validation) | 0.7794 Accuracy (cross-validation) | 0.9253
a) b)

Observing Table 2, it is important to highlight the values of the statistical mea-
sures that demonstrate the good performance of the multiclass classification for the breast
cancer subtypes, using the Optuna hyperparameter optimizer. For the MLP network ar-
chitecture with Optuna, the accuracy on the test set is 0.7914, and the accuracy using
cross-validation is 0.7794. For the CNN architecture, the accuracy is 0.7594, and the
accuracy using cross-validation is 0.9253. These results emphasize the enhanced perfor-
mance of the models in accurately classifying the breast cancer subtypes, due to the use
of the Optuna optimizer. As before, the additional statistical measures corroborate this
statement.

To further evaluate the classification performance post-optimization, Figure 3
presents the confusion matrices for the optimized MLP and CNN models, illustrating
the enhancements in prediction accuracy and the reduction of misclassified cases.
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This study provides a detailed analysis of the performance of MLP and CNN
architectures in the task of classifying breast cancer subtypes using data from the TCGA
repository. The initial dimensionality reduction, performed using PCA, was crucial for
selecting the most influential genes, reducing the number of features from 14,408 to 184.
This preprocessing step was essential to improve model efficiency and focus on the most
relevant features for classification.

The MLP, configured with four hidden layers, and the CNN, with two convo-
lutional layers, demonstrated distinct performances in the initial evaluation. The MLP
achieved an accuracy of 0.7498, while the CNN obtained 0.7046. These initial re-
sults suggest that, while both architectures are capable of capturing patterns in the data,
the CNN may face additional challenges due to its high sensitivity to imbalanced data
[Dablain et al. 2024] and the non-spatial nature of gene expression data.

The application of hyperparameter optimization using the Optuna method brought
significant improvements to both models. The MLP’s accuracy increased to 0.7794, while
the CNN experienced a much more substantial increase, reaching an accuracy of 0.9253.
This demonstrates that proper optimization can mitigate some of the initial limitations of
the CNN, making it highly effective even in contexts where the nature of the data is not
ideal for this architecture [Aggarwal 2015, Bishop 2006, Wu et al. 2019].

However, despite the improvements in accuracy, the optimized CNN may
still be vulnerable to generalization issues when applied to unbalanced datasets
[Dablain et al. 2024], as is often the case in gene expression studies. The robustness of
the MLP, on the other hand, was less affected by the nature of the data, suggesting that
this architecture may be more reliable in scenarios where the data are heterogeneous and
lack a clear spatial structure.

Additionally, the confusion matrices after optimization reveal that, while the CNN
achieved higher accuracy, it may still exhibit instability in certain misclassification cases.
This can be attributed to the CNN'’s tendency to over-specialize in specific patterns, which
can lead to overfitting, particularly in datasets with few representative samples for each
class [Aggarwal 2015, Bishop 2006].

Therefore, when choosing between CNN and MLP for tasks involving the classi-
fication of gene expression data, it is important to consider the nature of the problem and
the balance of the data. While the CNN can be extremely effective after optimization, its
application should be accompanied by rigorous validations and strategies to address data
unbalance. The MLP, with its greater flexibility and lower sensitivity to these issues, may
offer a more stable and reliable solution in many cases.

These findings underscore the importance of a careful approach in selecting and
optimizing learning models, particularly in fields such as bioinformatics, where the nature
of the data can significantly influence the performance of network architectures.

4. Conclusion

This study compared the performance of two deep neural network architectures, MLP and
CNN, applied to the classification of breast cancer subtypes using gene expression data
from the TCGA repository. CNNs, which have ability to capture spatial patterns, proved
unstable when applied to unstructured and unbalanced data, such as gene expression data.



MLPs, on the other hand, provided a more general and stable approach for this type of
problem, using fully connected layers to capture complex relationships between genes.

Before hyperparameter optimization, both architectures exhibited limitations,
highlighted in the confusion matrices, particularly in the performance of the CNN. Hyper-
parameter optimization using Optuna significantly improved the accuracy of both models.
By defining an appropriate search space and selecting objective functions such as accu-
racy, Optuna iteratively refined the models’ parameters, resulting in an optimized CNN
with two convolutional layers and an MLP with three hidden layers that demonstrated
improved performance.

Despite these improvements, the high sensitivity of the CNN in classifying unbal-
anced data underscores the need for careful analysis when applying this architecture to
data that lacks clear spatial structure, such as gene expression data. The MLP, with its
greater flexibility, proved to be a more robust alternative for this type of problem.

Therefore, the choice between CNN and MLP should be guided by the nature
of the data. While the CNN can be optimized to perform well in specific contexts, the
MLP has shown to be a more stable and effective solution for classifying breast cancer
subtypes, particularly after applying hyperparameter optimization techniques like those
offered by Optuna. These conclusions underscore the importance of an informed selection
of network architecture and the careful application of optimization techniques to achieve
superior performance in complex learning problems.
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