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Abstract. Contacts, defined as inter- and intramolecular interactions predicted
computationally, are typically detected using Euclidean distance and atom
types. However, traditional methods can be computationally expensive and
limit scalability. We introduce COCαDA (Contact Optimization by Cα Distance
Analysis), a novel method that incorporates domain knowledge of amino acids to
optimize distance cutoffs, simplifying implementation and enhancing efficiency.
COCαDA outperforms traditional methods such as all-against-all, static cut-
off (SC), and Biopython’s NeighborSearch (NS), averaging 2.5x faster than SC
and 6x faster than NS. COCαDA is well-suited for exploratory and large-scale
analyses and is freely available at https://github.com/LBS-UFMG/COCaDA.

1. Introduction
Proteins are macromolecules that are essential to life. In living beings, they
perform several tasks such as composing cellular structure, defending against in-
vaders, transporting nutrients, accelerating enzymatic reactions, among other functions
[Nelson and Cox 2008]. These molecules are composed of amino acid residues intercon-
nected by strong covalent peptide bonds. In addition to these bonds, weaker interactions
like hydrogen bonds, electrostatic forces, and hydrophobic interactions contribute to the
protein’s final shape, which is crucial for its function [Smetana and Misra 2017]. There-
fore, understanding a protein’s shape, along with the molecular bonds and interactions
that determine it, is essential for understanding its function.

Contacts can be defined as being protein inter- and intramolecular interactions (or
bonds), that are predicted in silico. Using computational methods can assist in labor-
intensive and costly experimental strategies, and facilitate large-scale approaches across
protein families or other sets of entries [Ding and Kihara 2018]. There are many ways to
determine if two residues, or in more refined methods, individual atoms, are in contact
(reviewed in [da Silveira et al. 2009]). Inter-residue comparisons offer a more coarse-
grained view, while interatomic analyses provide greater precision.

The two most common approaches to detect contacts are through the es-
tablishment of Euclidean distance thresholds (or cutoffs) in a discrete or continu-
ous form [de Melo et al. 2006, Veloso et al. 2007, Sobieraj and Setny 2021], or using
cutoff-independent methods like Voronoi [Voronoi 1908] and Delaunay Tessellations



[Delaunay 1934]. However, Pires and colleagues argued that cutoff-dependent ap-
proaches would yield more concise results than cutoff-independent ones, making data
interpretation easier and reducing computational burden [Pires et al. 2011].

Over the years, several tools and databases were developed to elu-
cidate and analyze protein contacts, ranging from simple command-line in-
terfaces to web services offering multiple interaction types and visualiza-
tion strategies [Wallace et al. 1995, Mancini et al. 2004, Lee and Blundell 2009,
Bickerton et al. 2011, Pimentel et al. 2021, Pires et al. 2011, Fassio et al. 2020,
Schreyer and Blundell 2013, Kasahara and Kinoshita 2014, Laskowski et al. 2018,
Jubb et al. 2017, Laskowski and Swindells 2011]. However, some of these tools focus
specifically on protein-ligand or residue-residue interactions.

To the best of our knowledge, these tools and databases suffer from one or more
of the following limitations: a) they are static, based on predefined entries and conditions;
b) they are computationally expensive, making large-scale analysis impractical; c) they
are limited by server loads and bottlenecks like long queues, delaying processing of more
than one file at a time; d) they only calculate inter-residue or interface contacts, limiting
accuracy and coverage compared to interatomic or whole-protein approaches; e) they use
cutoff-independent methods, that perform worse than cutoff-dependent methods; f) they
are outdated, lacking support for refined definitions or newer file types like ’.cif’; or g)
they have been discontinued, making their services unavailable.

The Protein Data Bank (PDB, [Berman et al. 2000]) archive currently contains
238.922 entries, with about 92% being proteins1. Due to advancements in experimental
resolution techniques, as well as computational hardware and software, the archive grows
by approximately 6.5% annually (over 10,000 new entries)2, highlighting the need for
large-scale data analysis tools.

In this context, we propose COCαDA (Contact Optimization by Cα Distance
Analysis), a new ingenious Python-based approach for large-scale analysis of inter- and
intrachain atomic contacts between protein residues. This approach offers significant po-
tential to accelerate research on data-heavy structural analyses, such as studies on protein
evolution, pathogen lineage mutations, virtual screening of compounds, among others.
COCαDA can be easily adapted to any existing analysis workflow, or be run indepen-
dently for exploratory purposes.

COCαDA applies contact cutoffs based on the maximum possible Cα distance
between a pair of residues, determined after analyzing all protein structures in the PDB.
COCαDA includes a customized parser for both PDB and mmCIF files, containing func-
tionalities for handling large files, filtering specific residues and interactions, and calcu-
lating geometric properties such as centroid and normal vectors for aromatic residues. In
addition, the tool supports parallel execution across any selection of available CPU cores.

To compare and benchmark our approach to others in the literature, we conducted
two case studies: a small dataset of gold standard enzyme superfamilies, aiming to ad-
dress different types of proteins and benchmark against slower methods; and a very large
dataset, encompassing all PDB protein entries under 10,000 residues, to accurately assess

1Available at https://www.rcsb.org/stats/explore/polymer entity type. Collected on August 23, 2024.
2Available at https://www.rcsb.org/stats/growth/growth-protein. Collected on August 23, 2024.



COCαDA performance and asymptotic growth.

2. Methodology
Figure 1 outlines the methodology for developing and benchmarking COCαDA. The pro-
cess begins with defining contacts and applying a static cutoff distance to the full PDB
dataset. COCαDA then uses the maximum possible Cα distance matrix for optimizing
contact detection. The tool was benchmarked against similar methods using two datasets,
focusing on processing time and computational complexity.

Figure 1. Overview of the methodology used to create and benchmark COCαDA.

2.1. Contact Definition

To store the interaction types and their conditions, we used a dictionary containing
all heavy atoms from the 20 standard amino acids, as defined in [Sobolev et al. 1999,
Fassio et al. 2020]. The possible interactions are: hydrogen and disulfide bonds; hy-
drophobic, attractive, repulsive, and salt bridge interactions; and aromatic stackings.

This dictionary also contains the conditions needed for the interaction (e.g., to
form an attractive interaction, the atoms must be differently charged), and the range of
Euclidean distances, in angstroms, for the interaction to occur (Table 1).

Table 1. Summary of Types, Range and Conditions for contacts to occur.
Da = Euclidean distance between the atom pair.

Contact Type Range (Å) Condition (other than range)
Hydrogen Bond 0 ≤ Da ≤ 3.9 Acceptor + Donor atoms
Disulfide Bond 0 ≤ Da ≤ 2.8 Cys:SG + Cys:SG atoms
Hydrophobic 2.0 ≤ Da ≤ 4.5 Hydrophobic + Hydrophobic atoms

Repulsive 2.0 ≤ Da ≤ 6.0 Equally charged atoms
Attractive 3.9 ≤ Da ≤ 6.0 Differently charged atoms

Salt Bridge 0 ≤ Da ≤ 3.9 Differently charged atoms

Aromatic Stacking 2.0 ≤ Da ≤ 5.0
Centroids of two aromatic rings in

parallel or perpendicular angle

2.2. Protein Data Bank Archive

The full PDB protein archive, in ‘.cif’ format, was obtained using in-house scripts to
query and download entries directly from the PDB API. First, a script was used to



query the API for entries containing “Protein” as an exact match from the parameter
“entity poly.rcsb entity polymer type”.

To avoid rate limits and overwhelming the server, queries had a 1 second delay
from one another, and only 25,000 IDs were obtained at a time. Then, a second script was
used, together with the Biopython Bio.PDB module [Cock et al. 2009], to download all
files that matched the IDs gathered in the first step. All files were downloaded between
July 4th and July 10th, 2024.

2.3. Biopython Implementation

To serve as a comparison to our method, the Biopython package [Cock et al. 2009],
largely used in bioinformatics, was used. The Bio.PDB module contains tools to parse a
.pdb or .cif file, as well as the NeighborSearch (NS) class, which is useful in interatomic
contact determination.

We then performed an all-atom neighbor search of 6Å radius, the maximum dis-
tance for contacts defined in our dictionary. Then, the neighbors were filtered based on
their distance and physicochemical properties relative to the parent atom. The contacts
obtained contained the following information: chain, residue number, and parent atom
name; chain, residue number, and neighbor atom name (i.e. the atomic pair making the
contact); type of interaction; and distance between the two atoms.

2.4. General Implementation and Static Cutoff

To analyze the PDB protein archive and obtain the maximum distances matrix used in
the rest of this work, we first devised a Static Cutoff (SC) implementation, where the
Cα cutoff distance was fixed. Akin to Biopython, proteins are treated as Python objects,
containing chains, residues, and atoms. The package includes a customized .pdb/.cif
parser, devised to rapidly extract only relevant information for contact determination,
considering the following points as defaults:

• Only the first model of each protein is considered;
• Only atoms with occupancy ≥ 0.50 are considered;
• Hydrogen atoms and non-standard residues are not considered;
• DNA and RNA molecules are not considered.

After parsing, the protein object is passed to a contact calculation script, where the
Cα distances for each pair of residues are obtained, and filtered based on the fixed cutoff.
To calculate normal vectors and angles for aromatic stacking contacts, the Python Numpy
package was used [Harris et al. 2020].

The atoms from the residues that are in range to interact are then compared to the
dictionary previously described, based on their distance to each other, and their physico-
chemical properties. Finally, the contacts are returned in a custom object containing all
their information, similar to the NS method.

2.5. Maximum Distances Matrix and COCαDA Implementation

During the SC approach, the maximum identified Cα distance for each amino acid pair
was stored in a matrix, and we then updated the cutoff ranges to reflect the new values,
herein called COCαDA.



The distance matrix D = [dij]n×n is a square matrix of size n × n, where n rep-
resents the number of standard amino acids. Each entry dij corresponds to the maximum
distance between the Cα atoms of the amino acids at positions i and j (e.g., d11 represents
an Alanine pair, and dnn represents a Valine pair):

D =


d11 d12 · · · d1n
d21 d22 · · · d2n

...
... . . . ...

dn1 dn2 · · · dnn

 , (1)

where each dij represents the maximum Euclidean distance between the Cα atoms of the
amino acids at positions i and j.

A total of 210 distance values were obtained, representing each possible residue
pair and excluding redundancies (e.g. Ala-Val is the same as Val-Ala) (Equation 2). All
calculations and definitions are exactly equal to the SC Implementation.

P =
n(n− 1)

2
+ n, (2)

where P is the number of non-redundant distance pairs, and n is the number of standard
amino acids. In this case, as n = 20, then P = 210.

2.6. Datasets

Two datasets were selected to benchmark our results and compare them to other com-
petitors (ndataset1 = 896 and ndataset2 = 215,716). The first is a modified gold-standard
set of enzyme superfamilies [Brown et al. 2006], with 365 unique entries ranging from
194 to 6,208 residues. For a more balanced comparison, we split all chains in different
files, and treated them separately. The new modified dataset contains 896 entries, rang-
ing from one to 994 residues. The second dataset includes all PDB proteins with less
than 10,000 residues, covering approximately 99.2% of all protein entries. This dataset
contains 215,716 unique entries, ranging from three to 10,000 residues.

2.7. Benchmarks

To ensure fairness and eliminate bias, all benchmarks were conducted simultaneously
using the same setup on a single core per process, to avoid memory overhead and par-
allelization issues. The second dataset was divided into nine batches of approximately
25,000 files, with each processed independently on a separate core, avoiding overlaps.

Although multithreading is available for all implementations using Python’s ’con-
current.futures’ standard module, it was not used; instead, each core handled a distinct
batch to maintain consistency. The processing time measured for each entry included file
reading, parsing, contact detection, and output generation.

3. Results and Discussion

3.1. Maximum Distance Matrix

In total, 217.454 PDB entries were downloaded in .cif format, totaling approximately 450
GB. Proteins ranged from three (PDB IDs: 1Q7O, 8DDG, 8DDH) to 503,221 (PDB ID:



8GLV) modeled amino acid residues. To obtain the values for the distance matrix, we
processed all the downloaded files using a fixed cutoff of 21Å for all pairs of residues
(SC). This value is comfortably above the maximum distance between the Cα of a pair
of arginines, the biggest residues by length. To confirm this, we compared an all-atom
approach (i.e., comparing every atom of the protein against each other, without cutoffs)
to the SC approach, in a small test dataset, and no contacts were missed (data not shown).

Using the 217,454 entries from the PDB, over 211 million amino acid residues
and 819 million contacts were processed and identified. We stored the maximum Cα
distances for every pair of the 20 standard amino acids, and after merging redundancies,
we obtained 210 values in a symmetric distance matrix (Figure 2, Equation 1).

Figure 2. Distance Matrix between the Cα of all pairs of residues.
The intensity of the color indicates the scale of the value (from 7 to 20 Å). Highlighted
diagonals represent pairs of the same residue.

As the distance matrix is color-coded based on the value of the maximum Cα
distance, we can quickly spot the minimum and maximum values determined. A pair of
two arginine residues, from chains G and H of PDB ID 3X0Y, represents the highest value
encountered, of 20.46Å (Figure 3a). This is expected and corroborates, while also being
lower, with the fixed distance of 21Å used in the SC approach, once again demonstrating
that the fixed cutoff was appropriate to yield no missed contacts.

For the lowest value encountered, we found a pair consisting of an alanine and
a glycine residue, both present in the HD chain of PDB ID 6QCM, with a distance of
7.65Å between their Cα’s (Figure 3b). This is expected as well, as alanines and glycines



are two of the smallest amino acid residues, differing only by a single CH3 group in the
side chain of the alanine, while glycine has a hydrogen atom in its side chain. However,
even with this difference, the presence of the CH3 group on the side chain of the alanine
does not impact the distance between their Cα atoms, only contributing to the chirality of
the alanine residue. We can check the lack of influence of this side group by comparing
the distance between this pair (7.65Å) with a pair of two glycine residues, which has a
maximum value of 7.77Å, just a little above the first one.

Figure 3. Maximum and minimum entries in the Distance Matrix.
a) Maximum value, in a contact between two arginine residues. b) Minimum value, in a
contact between an alanine and a glycine residue. The higher number represents the
distance between Cα, and the lower one the contact distance. The PDB IDs are shown
in center, and the contact details are shown in the format Chain:Residue-Atom.

Now comparing the actual contacts of the maximum and minimum values encoun-
tered in the distance matrix, we can see that their values are almost to the limit defined
in our dictionary. For the Arg-Arg pair, which makes a repulsive contact between their
nitrogen (NH2) atoms, the distance is 5.9Å, very close to the 6Å limit defined in the dic-
tionary (Figure 3a). For the Ala-Gly pair, the only possible contact type is hydrogen bonds
between their atoms, as the main chain atoms are only capable of donating (main chain
nitrogen) or accepting (main chain oxygen) hydrogen atoms. The maximum contact value
is then 3.89Å, even closer to the 3.9Å distance limit for hydrogen bonds (Figure 3b).

3.2. Benchmarks

With the maximum possible Cα distances properly established for all amino acid residue
pairs, we updated the “distances” dictionary with the new values, creating the COCαDA
(Contact Optimization by alpha-Carbon Distance Analysis) approach. To benchmark
COCαDA against other approaches used in the literature, we selected the following:
all atoms against all atoms (AllAtoms, used in [Pimentel et al. 2021]), Arpeggio Web3

[Jubb et al. 2017], Arpeggio CLI4 [Jubb et al. 2017], Biopython Neighbor Search (NS),
and Static Cutoff (SC). Other methods, like nAPOLI [Fassio et al. 2020], STING Con-
tacts [Mancini et al. 2004], and PICCOLO [Bickerton et al. 2011], were not available at
the time of search, so they were not considered.

3Available at https://biosig.lab.uq.edu.au/arpeggioweb/.
4Available at https://github.com/PDBeurope/arpeggio/.



Both Arpeggio versions were too slow to process even small proteins, as our tests
showed processing times of approximately 5 and 23 minutes for a single 1,000 residue
protein (PDB ID 6RTH) for Arpeggio CLI and Arpeggio Web, respectively. This can be
due to several factors, but we believe that the explanation lies in server load (for Arpeggio
Web), and the several external libraries and computing time that are needed to run the
more complex analysis (for both versions). So, as our goal is to make a fast, yet robust,
tool to calculate a massive number of contacts for a large list of proteins, both Arpeggio
versions were excluded from further analysis.

The first dataset used contains 896 entries, ranging from one to 994 residues. A
smaller dataset was chosen first to be able to compare the slowest approach (AllAtoms)
with the others, so we could get a sense of scale. In Figure 4, it is possible to see that the
AllAtoms approach rapidly explodes in a quadratic curve compared to the three others,
which maintain rather linear calculation times up to 1,000 residues. With this, we also
removed AllAtoms from further analysis. Comparing the faster approaches, SC obtained
calculation times 1.5x faster on average than NS, while COCαDA showed calculation
times 3.8x faster on average, obtaining the same contacts.

Figure 4. Protein Size vs. Computation Time plot of Benchmark 1.
In Benchmark 1, 896 files ranging from 1 to 994 residues were analyzed. COCαDA is
shown in cyan, SC in yellow, NS in magenta, and AllAtoms in orange. Points represent
individual entries, with lighter lines showing the fitted curves for the data.

As the results from the first, small dataset showed a significant difference in pro-
cessing times between the 3 fastest approaches, we then moved to the second dataset,
which contains 215,716 unique entries, ranging from three to 10,000 residues, making
approximately 99.2% of the PDB protein archive. The choice to remove entries above
10,000 residues was made due to the nature of those entries, which are mostly protein
complexes, containing several copies of each unique chain. This makes them not suitable
for contact analysis directly, requiring some kind of pre-processing, like splitting only



the unique chains or working with each individual protein present in the complex sepa-
rately. This can also be true for entries below 10,000 residues, but we believe that this
slice correctly represents the diversity of experimentally resolved protein structures.

Figure 5 shows the results for dataset 2 when comparing the COCαDA, SC, and
NS approaches. It is possible to see that COCαDA performs better for all proteins, av-
eraging approximately 6x faster times than NS and 2.5x faster times than SC. The SC
approach performs better than NS in proteins below 5,000 residues, equal between 5,000
and 7,000 residues, and worse above 7,000 residues. Outliers were considered as entries
that had a processing time ± 5 times the Standard Deviation for each approach, with less
than 1% of entries removed. After outlier removal, it is possible to see that COCαDA has
a consistent time vs. size distribution, while the other two approaches have more varia-
tion. This can be due to the tight and precise definition of cutoff distances for COCαDA,
which speeds up a lot of the computation, while also keeping little room for variations.

Figure 5. Protein Size vs. Computation Time plot of Benchmark 2.
In Benchmark 2, 215,716 files were analyzed, ranging from 3 to 10,000 residues.
COCαDA is shown in cyan, SC in yellow, and NS in magenta. A detail of the 0-1,000
protein size range is shown in the upper left corner. Points represent individual entries.
Curve fits are shown in the lower right corner and as darker lines on the data, and out-
liers were defined as ± 5 times the Standard Deviation for each approach.

The protein size range of 0-1,000 residues is noteworthy, as shown in detail in the
upper left corner of Figure 5. At this range, we can see the time difference observed in
dataset 1, while also identifying several divergent entries in the NS approach. The di-
vergent spike is composed only of Nuclear Magnetic Resonance (NMR) resolved entries,
and due to the nature of Biopython native parsing, all the models need to be parsed before
the first one is selected. As these entries are small, the parsing time of several NMR mod-
els outpaces the contact calculation time of the first one, leading to a spike in processing
time. This does not occur in the COCαDA and SC approaches, as the customized parser



handles only the selected model in the file (the default value is always the first model).

3.3. Complexity Analysis

Computing interatomic contacts is inherently a quadratic problem because it requires cal-
culating the distance between every pair of atoms. However, sophisticated data structures,
such as octrees, can be employed to avoid calculating distances between atoms/residues
that are too far apart. This approach theoretically reduces the computational space by
pruning irrelevant comparisons, leading to practical reductions in computation time and
typically logarithmic or log-linear complexity. However, they can be more complex to
implement and may perform poorly for small input sizes due to the overhead associated
with allocating and populating the data structures.

In this study, we chose to evaluate the complexity of various algorithms empir-
ically, by comparing standard methods commonly used in the structural bioinformatics
community with the COCαDA method. These different methods were tested with inputs
of increasing sizes (where n represents the number of residues, which have on average
eight atoms each), and we analyzed the resulting fitted curves with real datasets.

The curve fittings of the three approaches against the second dataset demonstrate
that both COCαDA (R2 quadratic = 0.99, Equation 3) and SC (R2 quadratic = 0.97, Equa-
tion 4) exhibit quadratic growth trends, while NS shows a linear growth trend (R2 linear
= 0.97, Equation 5). This difference arises from the nature of the contact identification
functions, which are the most time-consuming operations. COCαDA and SC have a time
complexity of O(n2), reflecting the quadratic growth in the number of contacts identified
as the entry size increases. In contrast, NS contact identification function operates with a
time complexity of O(n), leading to its linear growth pattern.

f(n) = 1.35× 10−7n2 + 5.04× 10−4n− 6.36× 10−3; (3)

g(n) = 1.20× 10−7n2 + 1.60× 10−3n− 9.18× 10−2; (4)

h(n) = 2.37× 10−3n+ 7.94× 10−2, (5)

where f(n), g(n), and h(n) are the best-fitted functions for COCαDA, SC, and NS, re-
spectively, and n is the number of residues.

However, for proteins below 10,000 residues, the quadratic growth of COCαDA
is so small that it outperforms the linear growth of NS in all entries. Examining Equation
3, we can see that the quadratic coefficient is orders of magnitude smaller than the linear
coefficient and the constant term, which explains the slow rate of growth observed. These
terms are so small that even when compared to Equation 5, from NS, only when the entry
has approximately 14,000 residues (or, on average, 112,000 atoms) would the two curves
intersect, far above the limit of the dataset and usual usage.

4. Conclusion
In the era of Big Data in bioinformatics, the need for efficient, robust, and scalable meth-
ods and tools is higher than ever. In structural bioinformatics, the continuous influx of
experimentally resolved proteins into the PDB underscores the need for innovative data
analysis solutions. We present COCαDA, a free, user-friendly tool to efficiently iden-
tify protein interatomic contacts on a large scale. COCαDA employs a novel method



for interaction ranges, based on the maximum Cα distances of two amino acid pairs col-
lected from all proteins on the PDB. By incorporating amino-acid domain knowledge to
set optimal cutoff values, we have effectively minimized temporal costs. Our approach
simplifies implementation while improving efficiency in large-scale protein interaction
analysis, and can be used in protein evolution studies and virtual screening campaigns,
among other applications.

Currently, COCαDA outputs a ‘.txt’ file, categorized by contact type. Contacts are
detected inter- and intrachain, so usage for protein-protein and protein-ligand interactions
are feasible. We plan to develop a web-based interface to improve usability and enable
deeper insights into complex interatomic contact networks. COCαDA is implemented in
Python and available at https://github.com/LBS-UFMG/COCaDA.
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