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Abstract. In this work, we explore heuristics for the Adjacency Graph Pack-
ing problem, which can be applied to the Double Cut and Join (DCJ) Distance
Problem. The DCJ is a rearrangement operation and the distance problem con-
sidering it is a well established method for genome comparison. Our heuristics
will use the structure called adjacency graph adapted to include information
about intergenic regions, multiple copies of genes in the genomes, and multiple
circular or linear chromosomes. The only required property from the genomes
is that it must be possible to turn one into the other with DCJ operations. We
propose one greedy heuristic and one heuristic based on Genetic Algorithms.
Our experimental tests in artificial genomes show that the use of heuristics is
capable of finding good results that are superior to a simpler random strategy.

1. Introduction
In biology, it is often important to have metrics to compare genomes of different indi-
viduals. Such metrics can be used to infer evolutionary distance for the construction of
phylogenetic trees. These metrics can also help in the identification of ortholog genes
(genes separated by speciation).

Many metrics for genome comparison were proposed over time, including the
well established rearrangement distance [Fertin et al. 2009]. The rearrangement distance
is a measure of the number of rearrangement operations, large scale mutations affecting
the order and orientation of the genetic material, needed to transform one genome into
another. One of the most studied rearrangement operations is the Double Cut and Join
(DCJ). The DCJ operation consists of cutting a genome in two points and joining the
resulting parts.

Initially, the DCJ distance was studied in genomes with a single copy of each
gene, and the orientation of the genes was taken into account [Yancopoulos et al. 2005].
In that scenario, there is an exact polynomial time algorithm to compute the distance in
linear time [Bergeron et al. 2006]. A generalized version of the DCJ Distance Problem
considers any two genomes as long as they have the same set of genes. In this case,
the DCJ Distance Problem is NP-hard [Shao et al. 2015] and some proposed solutions



for it include an integer linear programming formulation [Shao et al. 2015] and an O(k)-
approximation algorithm [Rubert et al. 2017], where k is the maximum number of copies
of a gene in the genomes.

In more recent works, a new approach was proposed to include informa-
tion about intergenic regions [Fertin et al. 2017, Brito et al. 2020, Oliveira et al. 2021,
Oliveira et al. 2024]. The usual representation in these works considers the number of
nucleotides between genes, which is called the size of the intergenic region between these
genes. With this representation, the DCJ Distance Problem is already NP-hard, even if
the genomes have a single copy of each gene and there is a 4/3-approximation algorithm
for it [Fertin et al. 2017].

The main structure proposed to deal with the DCJ Distance Problem is the ad-
jacency graph. This graph was initially proposed for the problem without gene repe-
tition [Bergeron et al. 2006] and is capable of representing multiple chromosomes, that
can be linear or circular. This structure was later adapted to deal with multiple gene
copies [Shao et al. 2015, Siqueira et al. 2021b] or intergenic regions [Fertin et al. 2017].
However, as far as we know, there is still no work combining multiple genes and inter-
genic regions for the DCJ Distance Problem.

This work proposes heuristics based on the adjacency graph for the DCJ Distance
Problem considering genomes with repeated genes and taking into account intergenic
regions and gene orientation. The heuristics are capable of dealing with genomes con-
taining multiple circular or linear chromosomes. We assume that the genomes have the
same set of genes. The next section introduces some definitions and formally states the
problems. In Section 3, we describe the developed heuristics. In Section 4, we describe
some experimental tests, and we conclude the paper in Section 5.

2. Definitions

We represent a genome as a set of chromosomes. Each chromosome C is encoded by
a pair (S, S̆), composed of a string S of size |S|, representing the genes, and a list of
non-negative integers S̆ of size |S̆|, representing the intergenic regions. Each character of
S has an associated sign + or − to represent the orientation of the correspondent gene.
We use the term label to the symbol used to represent a character, disregarding the sign.
Genes that are considered equal will be represented by characters with the same label.
Our representation will allow for both linear and circular chromosomes. Figure 1 shows
two genomes.

In linear chromosomes, we apply a process called capping for the representation.
In this process, we insert a character +# at the beginning and at the end of S. We call
these characters caps. They do not correspond to real genes, but to simplify our definitions
they are treated as genes at the beginning and end of the chromosome. Considering this
process, if C is linear, than |S| = |S̆|+ 1. If C is circular, then |S| = |S̆|.

The i-th character of S, denoted by Si, represents the i-th gene of the chromosome,
if it is linear. If the chromosome is circular, we list the genes by cutting it at some point
and assume that S1 and S|S| are adjacent. The i-th integer of S̆, denoted by S̆i, represents
the size of the intergenic region between Si and Si+1. In circular chromosomes, the integer
S̆|S̆| represents the size of the intergenic region between S|S| and S1.
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Figure 1. Two balanced genomes G1 and G2. The chromosomes of G1 are repre-
sented by the following pairs of strings and list of integers ([+#,+B,+#], [2, 1]),
([+A,−B], [2, 1]), and ([+#,−C,−A,+A,+#], [1, 4, 2, 2]). The chromosomes of
G2 are represented by the following pairs of strings and list of integers
([+B,−B,−A], [2, 2, 3]), ([+#,+A,+A,+C,+#], [1, 4, 2, 1]), and ([+#,+#], [0]). The
linear chromosomes are capped and one chromosome was included in G2 to en-
sure the same number of chromosomes in both genomes.

Two genomes are called balanced if all labels, except #, appear in the same num-
ber of genes, and the sum of the intergenic region sizes is the same in both genomes. In
this work we only consider balanced genomes. Additionally, until the genomes have the
same number of chromosomes, we add in the genome with fewer chromosomes linear
chromosomes with two caps and an intergenic region of size 0 between them. With this
addition of chromosomes the genomes remain balanced and have the same number of
characters with the label #.

Given two genomes G1 and G2, the adjacency graph AG(G1,G2) is composed of
the vertex set V , edge set E (separated in two subsets Er and Ed), and weight function
w : Er → N. For each character Si in a string S from a chromosome of G1 or G2, we have
two vertices vtSi

and vhSi
in V , if Si is not a cap, or we have one vertex vSi

in V , if Si is a
cap. To simplify our examples, we will use the labels to represent the vertices (adding h
and t accordingly). The edges in Er are called reality edges and connect vertices of two
consecutive characters Si and Si+1 as follows:

• vhSi
is connected with vtSi+1

, if both have sign +.
• vtSi

is connected with vhSi+1
, if both have sign −.

• vhSi
is connected with vhSi+1

, if Si has sign + and Si+1 has sign −.
• vtSi

is connected with vtSi+1
, if Si has sign − and Si+1 has sign +.

• If Si or Si+1 is a cap, just consider the above cases without the h or t in the vertex
correspondent to this cap.

The edges in Ed are called desire edges and connect the vertices from a character
Si of a string S in a chromosome of G1 to the vertices of each character Rj of a string R
of G2 with the same label as Si. If Si is a cap, vSi

is connected with vRj
. Otherwise, vtSi

is
connected with vtRj

and vhSi
is connected with vhRj

.

Two vertices vtSi
and vhSi

from the same character Si are called twin vertices and
two desire edges connecting vtSi

with vtRj
and vhSi

with vhRj
are called twin edges.

The weight function w is used to include intergenic region information in the
graph. For each reality edge e connecting a vertex of Si with a vertex of Si+1, we have
w(e) = S̆i. Figure 2 shows an adjacency graph created from the genomes in Figure 1.

The Double Cut and Join (DCJ) operation can be described using the adjacency
graph. Consider four vertices v1, v2, v3 and v4, correspondent to characters of G1, and
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Figure 2. The adjacency graph from the genomes in Figure 1. The reality edges
are shown as continuous lines, whose labels represent the weights, and the de-
sire edges are shown as dashed lines.

two integers x and y, such that there is a reality edge e1 connecting v1 with v2 and a
reality edge e2 connecting v3 with v4. Besides, we require that 0 ≤ x ≤ w(e1) and
0 ≤ y ≤ w(e2). The dcj(v1, v2, v3, v4, x, y) operation removes the edges e1 and e2 and
adds new edges connecting v1 with v3 and connecting v2 with v4. The new edges have
weights x+w(e2)− y and y+w(e1)− x, respectively. This operation can be interpreted
as cutting the genome G1 in two intergenic regions and joining the resulting parts. The
points where the genome is cut can be joined in different ways, depending on the order
in which the vertices are passed as arguments to dcj. The representation of the genome
has the signs of the reversed parts flipped, except caps that always have a positive sign.
Figure 3 shows two examples of the DCJ operation.

The DCJ Distance Problem consists of finding the minimum number of DCJ op-
erations to transform a genome G1 in another genome G2.

An alternating cycle is a cycle that alternates between reality and desire edges.
An alternating cycle is balanced if the sum of weights from the reality edges of one of
the genomes is equal to the sum of weight from the reality edges of the other genome. An
alternating cycle packing of the adjacency graph is a set of alternating cycles that do not
share edges, contain all vertices, and every desire edge that has a twin edge in a cycle is
also in a cycle.

An alternating cycle packing corresponds to an assignment of the genes of G1 to
the genes of G2 by following the desire edges. With this assignment we can treat the
genomes as if they do not have replicated genes. In that case, there is a known 4/3-
approximation algorithm for the DCJ Distance Problem [Fertin et al. 2017]. So we are
interested in finding a cycle packing that tries to produce an assignment that leads to the
shortest DCJ distance. As the DCJ Distance Problem is NP-hard, we will use the 4/3-
approximation algorithm instead of the exact distance.

3. Proposed Heuristics
We are going to adapt the heuristics proposed for a similar cycle packing prob-
lem [Siqueira et al. 2021b], where there are no intergenic regions and each genome has
a single linear chromosome. Our heuristics are based on the idea of producing multiple
cycle packing and selecting the best one by some criterion. This criterion can be the
DCJ distance approximation, but to increase the efficiency of the algorithms we use only
the number of balanced cycles in the packing as the selection criteria. The number r of
packing to be produced is the same for all heuristics.
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Figure 3. Two applications of the DCJ operation in the genome G1 of Figure 1
and in the graph of Figure 2. The first operation is dcj(Ah, Bh, Ct, Ah, 1, 2), the cut
and formed intergenic regions and edges are marked in red. The second opera-
tion is dcj(#, Bt, At, At, 1, 0), the cut and formed intergenic regions and edges are
marked in blue.

The first heuristic, called Simple Random (SR), uses a simple random generation
to generate the r packings. At each step, we select a random desire edge that is not the
only desire edge incident to its vertices, and remove all other desire edges incident to its
vertices. If that edge has a twin we do the same for it.

The second heuristic, called Greedy BFS (GBFS), uses a greedy approach by se-
lecting a random vertex and applying a breadth-first search to find the shortest alternating
cycle containing that vertex. For every edge selected for the cycle remove all other desire
edges incident to its vertices and, if it has a twin, we remove all other desire edges inci-
dent to the vertices of this twin. We repeat this process until all vertices are in a cycle.
During the breadth-first searches we must keep track of the edges that have to be removed
to ensure that the cycle respects the restriction that every edge must have its twin in a
cycle as well. Algorithm 1 shows a pseudo-code of this heuristic, and Figure 4 shows the
production of one cycle packing.

The last heuristic uses a Genetic Algorithm (GA) approach [Mitchell 2008] to pro-
duce the set of packings. This approach is inspired by evolution and consists of producing



Algorithm 1: Greedy BFS
Data: A adjacency graph AG(G1,G2) and the number of cycle packings r
Result: A cycle packing for AG(G1,G2)

1 M← ∅
2 while |M| < r do
3 P ← ∅
4 while P does not cover all vertices of AG(G1,G2) do
5 v ← vertex of AG(G1,G2) not belonging to any cycle of M
6 C ← cycle resulting from a breadth-first search in AG(G1,G2),

starting with v
7 Remove the necessary vertices from AG(G1,G2)
8 P ← P ∪ C

9 M←M ∪ {P}
10 return Cycle packing belonging to M with the largest number of balanced

cycles

an initial set of individuals, called population, and then applying crossovers and mutations
to generate new populations. The individuals are evaluated by a fitness function, which,
in our case, is the number of balanced cycles in the packing. The algorithm stops when a
fixed number of individuals are generated.

Besides the total number of individuals r, our genetic algorithm is specified by
two parameters: the size of the population p (0 ≤ p ≤ r) and the mutation rate m
(0 ≤ m ≤ 1). An initial population is generated by the GBFS heuristic. Until a total of r
individuals are produced, at each iteration the algorithm produces a new population of p
new individuals by applying the following steps:

• Selection: At this step, the algorithm selects, with repetition, 2p individuals to
take part in the crossovers. The selection of each individual is by tournament, in
which two individuals are randomly chosen and the one with the highest fitness is
selected.

• Crossover: The 2p selected individuals are paired, and the algorithm applies the
crossover operation in each pair to generate a new individual. Given two cycle
packings P and P ′ of an adjacency graph, a crossover of P and P ′ is a new
cycle packing created by the following procedure. Let L and L′ be two randomly
ordered lists of the cycles from P and P ′, respectively. Starting with an empty
set P ′′ and with the original adjacency graph, while P ′′ is not a cycle packing and
there are cycles in L or L′, remove a cycle from L or L′ (with a 50% probability to
remove from each list, or 100% probability to remove from one list if the other is
empty), and add it toP ′′ if all its edges are still available. As in the GBFS heuristic,
remove the necessary edges from the graph to ensure the restriction about the twin
edges. If both lists L and L′ are empty and P ′′ is not yet a cycle packing, use
breadth-first searches, as in the GBFS heuristic, to complete the packing. Figure 5
shows an example of crossover.

• Mutation: After the new individuals are generated, a mutation is applied to each
one in order to increase the diversity of the population. In the mutation of a cycle
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Figure 4. Example of the construction of one packing from the GBFS heuris-
tic applied to the adjacency graph from Figure 2. The cycles obtained on each
breadth-first search are marked with an × indicating the starting vertex of the
search. The resulting packing has two balanced cycles.

packP ′′, we remove each cycle ofP ′′ with probability m and create a new packing
from the remaining cycles of P ′′ using breadth-first searches.

• Elitism: As we are going to replace the old population with the new one, we cannot
guarantee the quality of the new population. So, to ensure that at least the best
individual is kept, we replace the individual with the lowest fitness from the new
population with the individual with the highest fitness from the old population, if
the old individual has a higher fitness than the new one.

Algorithm 2 shows a pseudo-code of the GA heuristic.

4. Experiments

The instances used in our experiments and the implementation of the heuristics (in C++)
are available at a public repository1. The following tests were conducted on a computer

1https://github.com/compbiogroup/Heuristics-based-on-Adjacency-Graph-Packing-for-DCJ-Distance-
Considering-Intergenic-Regions



Algorithm 2: Genetic Algorithm
Data: An adjacency graph AG(G1,G2), the number of cycle packings r, size

of the population p, and mutation rate m
Result: An adjacency packing for AG(G1,G2)

1 P0 ← p cycle packings generated by the GBFS heuristic
2 M← P0

3 i← 0
4 while |M| < r do
5 S← Sequence of p selected pairs of individuals from Pi

6 P′
i+1 ← Set of p new individuals created by crossover of individuals from
S

7 P′′
i+1 ← Set of p individuals obtained by mutation of individuals from
P′

i+1

8 if the best individual of Pi is better than the worse individual of P ′′
i+1 then

9 Pi+1 ← Set P′′
i+1 with its worse individual replaced with the best

individual of Pi

10 else
11 Pi+1 ← P′′

i+1

12 M←M ∪ {Pi+1}
13 i← i+ 1

14 return Cycle packing belonging to M with the largest number of balanced
cycles

equipped with an “Intel(R) Xeon(R) CPU E5-2470 v2” with 40 cores at 2.40GHz, 32GB
of RAM, and 9GB of swap space.

We created a database of simulated genomes to test our heuristics. We produced
25000 pair of genomes separated into groups of 1000. Each group is defined by the
number ℓ of labels used and the number o of DCJ operations applied. We created each
pair by the following process (each random selection is uniformly distributed):

• We randomly produced 200 characters picking the label from a set with ℓ symbols
and choosing the signs randomly.

• We randomly chose 201 integers in the interval [0, 100] to represent the intergenic
regions.

• We produced a genome G containing a single linear chromosome with the chosen
characters and intergenic regions.

• We created the first genome of the pair by applying o/2 DCJ operations in G.
• We created the second genome of the pair by applying o/2 DCJ operations in G.

For our tests all heuristics produced a set of r = 1000 alternating cycle packings.
For the GA heuristic, we chose the parameters m = 0.2 and p = 100.

In Table 1 and Table 2 we can see the results of our experiments. For each heuristic
and each group of instances, we show, in Table 1, the average and standard deviation of
the distance computed from the best cycle packing found and, in Table 2, the average and
standard deviation of the execution time (n seconds) of the algorithms. In both tables the
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Figure 5. Example of the crossover of two cycle packing of the graph in Figure 2.
Two cycles are selected from the first packing, two from the second packing, and
one new cycle is inserted by a breadth-first search to complete the packing.

standard deviation is shown as a percentage of the mean.

We can see that GA found the shortest distance on average, followed by GBFS
and SR. That indicates that using a more sophisticated strategy to produce the packings
results in a better result. The largest difference between the average distances found by
GA and by GBFS is 54.44 for o = 40 and ℓ = 40, while the shortest such difference is
6.29 for o = 10 and ℓ = 50. Considering the standard deviation, the distinction between
the distances found by GA and by GBFS is clearer with larger values of o.

Additionally, the running time of GA was shorter than the running time of the
other heuristics. This is a consequence of the fact that the GA heuristic does not pro-
duce all cycle packings from scratch, but produces most packings from crossovers and
mutations.

5. Conclusion

We described and tested three heuristics for Adjacency Graph Packing that can be used to
estimate DCJ distances. One of the heuristics is based on a simple random strategy (SR),
another uses a greedy strategy based on BFS (GBFS), and the last one is based on Genetic
Algorithms (GA). These heuristics were tested on a database of simulated genomes and
GA found the shorter distances on average with the shortest running time.

This work can be further extended to consider genomes with distinct sets of genes,
as was done for the original heuristics developed for unichromosomal genomes with-



Table 1. Average and standard deviation for the DCJ distances resulting from the
heuristics.

o ℓ GA GBFS SR
10 10 145.03 ± 15.21% 172.02 ± 10.86% 204.44 ± 11.14%
10 20 59.03 ± 51.18% 108.45 ± 35.98% 148.47 ± 33.12%
10 30 25.60 ± 66.17% 51.23 ± 64.45% 87.31 ± 63.51%
10 40 16.15 ± 63.07% 27.74 ± 75.39% 54.80 ± 86.22%
10 50 12.01 ± 44.94% 18.30 ± 73.85% 35.55 ± 99.68%
20 10 163.85 ± 9.80% 186.75 ± 6.25% 214.11 ± 5.70%
20 20 103.75 ± 28.18% 152.03 ± 14.79% 182.64 ± 13.58%
20 30 59.35 ± 38.88% 109.22 ± 30.38% 146.76 ± 26.82%
20 40 37.29 ± 43.65% 75.06 ± 43.67% 109.62 ± 41.23%
20 50 28.58 ± 37.72% 52.02 ± 49.17% 81.83 ± 52.58%
30 10 175.16 ± 7.61% 194.90 ± 5.45% 217.66 ± 4.02%
30 20 135.22 ± 17.37% 172.33 ± 8.77% 196.27 ± 7.93%
30 30 96.39 ± 27.27% 147.38 ± 14.37% 172.66 ± 13.77%
30 40 68.36 ± 34.96% 120.39 ± 22.65% 149.94 ± 19.43%
30 50 51.12 ± 32.35% 93.15 ± 30.95% 123.60 ± 29.17%
40 10 185.00 ± 5.75 % 201.67 ± 4.20% 219.28 ± 3.38%
40 20 156.60 ± 10.76% 184.72 ± 6.37% 203.64 ± 5.53%
40 30 119.66 ± 18.99% 165.50 ± 9.60% 186.53 ± 8.91%
40 40 92.53 ± 24.36% 146.97 ± 13.69% 169.63 ± 12.04%
40 50 75.16 ± 26.47% 127.49 ± 17.35% 151.83 ± 16.10%
50 10 191.97 ± 4.72% 205.41 ± 3.74% 221.23 ± 2.86%
50 20 168.78 ± 7.91% 192.35 ± 5.03% 208.59 ± 4.08%
50 30 144.03 ± 12.30% 178.56 ± 7.17% 195.46 ± 6.28%
50 40 117.53 ± 18.38% 163.73 ± 9.80% 182.52 ± 8.61%
50 50 98.91 ± 21.72% 147.36 ± 12.51% 168.67 ± 11.39%

out intergenic regions [Siqueira et al. 2024]. There are known algorithms for rearrange-
ment distances with intergenic regions and distinct sets of genes, but without gene repli-
cas [Alexandrino et al. 2021a, Alexandrino et al. 2021b]. It is also relevant to explore
other approaches to the problem, including exact and approximation algorithms. The
use of String Partition problems with intergenic regions can be one approach to develop
approximations [Siqueira et al. 2021a, Siqueira et al. 2022].

Another path for future works is the application of the proposed algorithms to
compare real genomes. These tests can include the integration of the algorithms in bioin-
formatic tools used in the construction of phylogenetic trees or detection of orthologous
genes.
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Table 2. Average and standard deviation for the running times of the heuristics
(in seconds).

o ℓ GA GBFS SR
10 10 36.78 ± 4.11% 213.56 ± 26.05% 40.78 ± 14.53%
10 20 25.73 ± 7.41% 136.13 ± 41.69% 40.61 ± 13.82%
10 30 16.10 ± 6.94% 67.38 ± 37.00% 38.25 ± 13.56%
10 40 11.88 ± 5.58% 37.31 ± 28.46% 37.52 ± 12.81%
10 50 10.31 ± 4.05% 22.75 ± 19.60% 34.95 ± 11.60%
20 10 37.91 ± 3.46% 225.08 ± 23.60% 39.70 ± 14.25%
20 20 32.76 ± 6.35% 172.17 ± 35.19% 39.64 ± 14.05%
20 30 26.04 ± 8.09% 119.97 ± 44.08% 39.62 ± 13.48%
20 40 19.13 ± 8.04% 82.09 ± 43.96% 38.43 ± 12.97%
20 50 15.39 ± 7.88% 56.28 ± 38.76% 36.28 ± 11.96%
30 10 38.07 ± 3.45% 232.65 ± 24.05% 41.24 ± 14.62%
30 20 37.30 ± 5.73% 195.65 ± 29.77% 40.57 ± 14.26%
30 30 33.24 ± 7.82% 164.24 ± 40.45% 40.24 ± 13.33%
30 40 29.02 ± 9.58% 132.96 ± 47.19% 39.22 ± 13.39%
30 50 24.13 ± 9.82% 102.31 ± 49.57% 37.05 ± 12.37%
40 10 39.03 ± 3.38% 240.62 ± 21.66% 41.05 ± 14.24%
40 20 39.48 ± 4.90% 202.19 ± 29.20% 40.69 ± 14.11%
40 30 38.01 ± 6.84% 180.91 ± 36.32% 40.47 ± 14.18%
40 40 35.15 ± 8.67% 160.33 ± 45.16% 40.09 ± 13.15%
40 50 31.70 ± 9.77% 139.39 ± 47.48% 38.39 ± 12.49%
50 10 39.62 ± 3.54% 243.66 ± 20.86% 41.44 ± 14.56%
50 20 40.99 ± 4.98% 211.95 ± 28.17% 39.90 ± 13.85%
50 30 41.46 ± 6.53% 194.58 ± 36.40% 40.08 ± 13.76%
50 40 39.86 ± 8.21% 180.37 ± 43.45% 40.55 ± 13.47%
50 50 38.77 ± 9.86% 161.15 ± 46.69% 39.22 ± 13.08%
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