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Abstract. This paper investigates convolutional neural networks (CNN) for pre-
dicting cancer types by integrating protein-protein interaction (PPI) networks
with omics data. While [Chuang et al. 2021] employed a single 3-layer CNN,
we explore ten different architectures, including a custom model developed
by our team (CNN2Layers), following their methodology. By evaluating the
strengths and weaknesses of these models, we aim to identify the most effective
CNN for accurately predicting various human cancers. Our proposed model
achieved state-of-the-art performance using fewer layers. Interestingly, the sim-
pler architectures achieved superior results, indicating their effectiveness in
handling the specific characteristics of the dataset.

1. Introduction
Cancer continues to be the second leading cause of death globally, with around 9.7 mil-
lion fatalities and nearly 20 million new diagnoses estimated in 2022 [Bray et al. 2024].
Late-stage diagnoses are closely linked to lower survival rates, as advanced-stage patients
have limited treatment options and worse prognoses [Allemani et al. 2018]. Addition-
ally, tumor heterogeneity, encompassing genetic, epigenetic, and phenotypic variations,
further complicates treatment by causing diverse responses and resistances to therapies
[Dagogo-Jack and Shaw 2018].

In cancer prediction, integrating PPI networks with omics data enhances the un-
derstanding of disease mechanisms [Matsubara et al. 2019]. A PPI network maps the
interactions between proteins within a cell, revealing how proteins collaborate in various
biological processes [Barabási et al. 2010]. Omics data is a broader term encompassing
various types of biological data at a molecular level, including genomics (study of the
genome), transcriptomics (study of RNA transcripts, including gene expression profiles),
proteomics (study of the proteome, or the full set of proteins), metabolomics (study of
metabolites), and other related fields [Horgon and Kenny 2011]. Gene expression pro-
filing is a subset of transcriptomics, which in turn is part of the broader field of omics
and in cancer prediction, analyzing gene expression profiles can identify biomarkers and
molecular signatures associated with different cancer types, aiding in early diagnosis and
personalized treatment strategies [Qian et al. 2021].

Our proposal involves conducting a comparative study of different CNN models,
inspired by the research detailed in the article by [Chuang et al. 2021]. We adopt the same
methodology for databases and metrics as outlined in the reference article. That method-
ology includes generating 2D images from integrated PPI datasets, BioGRID, DIP, InAct,



MINH, and MIPS, and TCGA Database (The Cancer Genome Atlas), which provides ex-
tensive omics data, including gene expression profiles for various cancer types. Those
images are provided as input to CNN models to recognize patterns and features within
visual data. By training the CNN with those images, the model learns to predict cancer
types based on the complex relationships and variations captured in the PPI and omics
datasets.

In the study by [Chuang et al. 2021], the authors experimented with only one ar-
chitecture (a 3-layer CNN). In contrast, this paper explores several CNN architectures,
including LeNet-5, AlexNet, VGG16, VGG19, InceptionV3, ResNet50, Xception, and
DenseNet, to conduct experiments and comparisons following the methodology outlined
by [Chuang et al. 2021]. Additionally, we also investigated the performance of a custom
CNN architecture developed by our team (referred to as CNN2Layers). By examining
the strengths and weaknesses of each model, we aim to identify the most effective CNN
models for accurately predicting different types of human cancers. Our proposed model
achieved state-of-the-art performance with fewer layers.

The article is structured as follows: Section 2 presents related works, Section 3
describes the database and the CNN models, and Section 4 shows the experimental results.
Finally, Section 5 presents the main conclusions of this paper.

2. Related Works
Recent advancements in the application of deep learning techniques, particularly CNN,
have significantly enhanced cancer diagnosis, therapy, and prognostic evaluation in
biomedical applications. For instance, [Zhou et al. 2020] utilized deep learning mod-
els, specifically the Inception V3 CNN architecture, to predict clinically negative axillary
lymph node metastasis from ultrasound images in patients with primary breast cancer.
The model was trained and validated using a dataset of ultrasound images of breast can-
cer patients, achieving superior accuracy and sensitivity when compared to radiologists,
with the model reaching an accuracy rate of 94.6% and a sensitivity of 92.1%. This un-
derscores the potential of CNN in achieving higher diagnostic accuracy and improving
patient outcomes in breast cancer care.

In another study, [Lombardo et al. 2021] applied CNN to analyze time-to-event
data for distant metastases in head and neck cancer patients. The model was trained
on imaging data to predict the time until distant metastasis occurred. Utilizing imag-
ing datasets from independent cohorts of head and neck cancer patients, the CNN model
showed a reliability score of 87.5% in predicting distant metastasis, facilitating better pa-
tient stratification and personalized treatment. This study highlighted the potential utility
of CNN in clinical settings, enabling more accurate prognostic evaluations and aiding in
personalized treatment strategies for cancer patients.

Furthermore, [Ma and Zhang 2018] developed the OmicsMapNet tool, which em-
ploys deep learning to transform high-dimensional omics data into 2D images for cancer
grade predictions. Using RNA-Seq expression data of diffuse gliomas, the data were re-
organized into treemaps, capturing the hierarchical structure of genes. CNN trained on
these images demonstrated high accuracy in classifying Low-Grade Gliomas (LGG) and
Glioblastoma Multiforme (GBM), achieving an overall accuracy of 93.8%. The Omic-
sMapNet tool effectively utilized the hierarchical structure of genes to enhance cancer



grade predictions, showcasing a novel approach to leveraging high-dimensional biologi-
cal data in cancer diagnostics.

In another notable study, [Matsubara et al. 2019] integrated PPI networks with
gene expression profiles to develop a CNN model for lung cancer classification. The
study gathered PPI data from databases such as BioGRID, DIP, IntAct, MINT, and MIPS,
and combined this data with RNA-Seq gene expression profiles. Spectral clustering tech-
niques were used to generate 2D representations of the PPI networks, which were then
used to train the CNN model. The integration of diverse biological datasets improved
the model’s robustness and predictive accuracy, effectively classifying lung cancer sub-
types with an accuracy of 91.2%. This research highlighted the importance of combining
PPI networks with gene expression data to enhance the predictive capabilities of CNN
models in cancer classification. These advances demonstrate the significant potential of
CNN and other deep learning techniques to improve cancer diagnosis, stratification, and
outcome prediction. By integrating multidimensional data and complex biological inter-
relations, these approaches offer new opportunities to enhance therapeutic management
and increase patient survival rates.

3. Materials and methods
This study aims to compare the 3-layer CNN architecture proposed by
[Chuang et al. 2021] with several alternative CNN architectures. Additionally, we
developed a custom model, CNN2Layers, inspired by their methodology, to evaluate
the performance and robustness of different approaches. The methodology proposed
by [Chuang et al. 2021] serves as the foundation for predicting and classifying normal
tissues and tumors across 11 cancer types. Initially, protein-protein interaction (PPI) and
gene expression data were compiled to create two-dimensional visual representations
using clustering algorithms. Clinical and RNA-Seq data encompassing 6,136 samples
from 11 cancer types, sourced from TCGA, were analyzed alongside PPI data for 16,433
human proteins. The Laplacian method was employed to project the PPI network into
a two-dimensional space, facilitating its integration with gene expression data. These
images were provided as input to CNN model to discriminate between normal tissues
and cancer types. Of these, 1,228 images (307 normal tissues and 921 tumors) were
designated for training, while the remaining 4,908 images were used for validation. At
this point, we extended the original methodology by incorporating nine additional CNN
models alongside the initial architecture, enabling a comparative analysis across a total
of ten models. This extension allowed for a thorough evaluation of model performance
and robustness across varied architectures. Finally, metrics and boxplots were computed
to evaluate the models’ performance. The source codes and datasets were uploaded on
GitHub1. We utilized the same dataset available in this repository2.

3.1. Datasets
We adopted the same data integration method used in [Chuang et al. 2021] cancer classi-
fication research, which combines level 3 RNA-Seq data with clinical data from TCGA.
The Figure 1 illustrates the integrated dataset, which consists of gene expression profiles

1https://github.com/marilioalmeida/cnn-cancer-prediction.git
2https://github.com/bioxgem/CNN_model/tree/main/
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Figure 1. Schematic overview of our method based on [Chuang et al. 2021]. In-
tegration of PPI and RNA-Seq data from TCGA and PPI databases. The analy-
sis encompasses 181,868 interactions involving 16,433 genes, alongside clinical
data from 5,528 tumor samples and 608 normal tissue samples. In contrast to
the approach of [Chuang et al. 2021], which employed a single architecture, our
method applies 10 distinct CNN architectures to the same dataset (dotted box).

for 20,531 genes derived from 5,528 tumor samples and 608 normal tissue samples. Ta-
ble 1 presents a summary of the 11 distinct cancer types included in the integrated dataset,
detailing their abbreviations, cancer type names, and the respective number of normal and
tumor samples for each type. For the PPI integration, we followed the same methodol-
ogy as [Chuang et al. 2021], where five public PPI databases were integrated: BioGRID
[Oughtred et al. 2021], DIP [Xenarios et al. 2000], IntAct [Aranda et al. 2010], MINT
[Calderone et al. 2020], and MIPS [Mewes et al. 2006], encompassing a total of 16,433
human proteins and 181,868 PPIs. Protein interactions were linked to gene expression
profiles through gene names and IDs, creating a dataset with 14,230 proteins and 152,519
PPIs. Differentially expressed genes (DEGs) were determined using fold change and



modified t-statistic approaches, identifying 12,024 DEGs with notable expression changes
in at least one cancer type. Spectral clustering was then applied to visualize these net-
works in two dimensions.

Table 1. Expression datasets of RNA-seq and clinical data in 11 cancers.
Abbreviation Cancer type No. of normal No. of tumor
BRCA Breast invasive carcinoma 113 1095
COAD Colon adenocarcinoma 41 285
HNSC Head and neck squamous cell carcinoma 44 520
KIRC Kidney renal clear cell carcinoma 72 533
KIRP Kidney renal papillary cell carcinoma 32 290
LIHC Liver hepatocellular carcinoma 50 371
LUAD Lung adenocarcinoma 59 515
LUSC Lung squamous cell carcinoma 51 502
PRAD Prostate adenocarcinoma 52 497
STAD Stomach adenocarcinoma 35 415
THCA Thyroid carcinoma 59 505

3.2. 2D Representation

For the 2D representation, we employed the same approach as described by
[Chuang et al. 2021]. Specifically, they employed spectral clustering, utilizing the Lapla-
cian (L) matrix to reduce the dimensionality of complex cancer networks, followed by the
application of CNN techniques for further analysis. The cancer network is represented
using an adjacency matrix A and a diagonal matrix D, from which the Laplacian matrix
L is derived using the formula: L = D - A.

The symmetric Laplacian matrix (L) is structured such that cells are given a value
of “-1” for connected protein pairs, while unconnected pairs are represented by “0”. The
diagonal cells contain the node degree, which corresponds to the number of edges each
node has in the network. Subsequently, the eigenvalues and eigenvectors of the Laplacian
matrix were derived through linear transformation. The researchers preserved the net-
work’s topology and connectivity by utilizing the smallest and second smallest non-zero,
non-negative eigenvalues, along with their corresponding eigenvectors, to project the can-
cer network, consisting of 6,261 differently expressed genes and 28,439 interactions, onto
a 2D grid with dimensions of 100×100 cells.

This technique projected the PPI network onto a two-dimensional plane, using
the smallest eigenvalues for the x and y coordinates. The resulting network included
1,849 unique nodes, each representing a protein, with gene expression data from clinical
samples assigned to corresponding nodes. In cases where multiple genes were mapped
to a single node, their expression levels were averaged. A total of 6,136 cancer network
images were created as input for a CNN model, which was tasked with differentiating
between normal tissues, tumor samples, and specific cancer types.

3.3. Convolutional Neural Network

Convolutional Neural Networks, also known as ConvNets, are a class of deep learn-
ing models specifically designed for processing structured grid data, such as images
[LeCun et al. 1989]. In [Chuang et al. 2021], the authors implemented a CNN architec-
ture consisting of three consecutive convolutional layers, each containing 64 filters, re-
ferred to in this work as (CNN). The first convolutional layer uses a 5x5 kernel, while the



subsequent layers use 3x3 kernels, all with ‘same’ padding to maintain the spatial dimen-
sions of the input. Batch normalization is applied after each convolutional layer to en-
hance the training process and model performance. Each convolutional layer is followed
by a max-pooling layer with a 2x2 pool size and ’same’ padding to reduce the spatial
dimensions. The network is then flattened and passed through four fully connected layers
with 1000, 600, 80, and 12 neurons, respectively. The first three dense layers use ReLU
activation, and the final layer uses softmax activation for classification.

We also modified the AlexNet CNN architecture by reducing three layers to sim-
plify the network, resulting in a new model Figure 2 (CNN2layers) , the first convolutional
layer uses a 11x11 kernel with a stride of 4x4 and ’valid’ padding, while the second con-
volutional layer uses a 5x5 kernel with a stride of 1x1 and ’same’ padding to maintain the
spatial dimensions. Each convolutional layer is followed by a max-pooling layer with a
3x3 pool size and ’valid’ padding to reduce the spatial dimensions. The network is then
flattened and passed through four fully connected layers with 4096, 4096, 1000, and 12
neurons, respectively. The first three dense layers use ReLU activation, and the final layer
uses softmax activation for classification.
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Figure 2. The CNN2Layers architecture, which we implemented with two convo-
lutional layers, was developed for classifying normal and tumor tissue images.
The network processes a dataset of 1,228 images, including 307 normal tissue
samples and 921 tumor samples from 11 distinct cancer types. The first convolu-
tional layer uses 96 filters (11x11), while the second applies 256 filters (5x5), both
utilizing ReLU activation functions. Each convolutional layer is followed by a 3x3
pooling layer. The extracted features are then passed through fully connected
layers, culminating in the classification into 12 categories, encompassing both
normal and cancerous tissues.

Figure 3 illustrates the timeline of CNN model developments. Below, we provide
a timeline overview of each CNN architecture utilized in our experiments.

• LeNet-5 [LeCun et al. 1998] is a pioneering CNN architecture designed to recog-
nize handwritten digits. The LeNet-5 architecture comprises three convolutional
layers, two sub-sampling (pooling) layers, and two fully connected layers. It uti-
lizes backpropagation for training and contains a total of 431,000 weights.
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Figure 3. Timeline of CNN models.

• AlexNet [Krizhevsky et al. 2012] represented a significant advancement over its
predecessor, LeNet. This CNN model was designed to classify 1,000 image
classes from the ImageNet LSVRC-2010 dataset, achieving groundbreaking re-
sults at the time. AlexNet consists of eight layers: five convolutional layers and
three fully connected layers. It features 60 million parameters and 650,000 neu-
rons, highlighting its complexity and capacity for DL.

• VGG16 and VGG19 [Simonyan and Zisserman 2014] introduced as one of the
most popular submissions to ILSVRC-2014, the VGG models, including VGG-
11, VGG-16, and VGG-19, consist of 11, 16, and 19 layers, respectively. The
primary objective of varying the number of convolutional layers (Conv2D) was to
better understand the impact of network depth on image classification accuracy.
VGG-19, the most computationally intensive model, contains 138 million weights.

• InceptionV3 [Szegedy et al. 2015] is the third iteration of the Inception archi-
tecture and incorporates several innovative techniques, such as factorized convo-
lutions, aggressive regularization, and auxiliary classifiers, to improve both effi-
ciency and accuracy. InceptionV3 achieves high performance by using smaller
convolutions to reduce the number of parameters and computational complexity
while maintaining high representational power.

• ResNet50 (Residual Network) [He et al. 2016] achieved the first place in the 2015
ILSVRC challenge. The primary goal of ResNet was to address the vanishing gra-
dient problem that hindered previous deep networks. The ResNet-50 architecture
comprises 49 convolutional layers followed by one fully connected layer, totaling
25.5 million weights.

• Xception [Chollet 2017] builds upon the inception model by replacing the stan-
dard Inception modules with depthwise separable convolutions. This modification
allows Xception to achieve greater efficiency and performance by independently
processing spatial and channel-wise information within the network. By lever-
aging the strengths of depthwise separable convolutions, Xception effectively re-
duces the number of parameters and computational cost.

• DenseNet [Huang et al. 2017] features a unique architecture where each layer is
densely connected to every other layer. This interconnected structure is what gives
DenseNet its name. Each layer receives input from all preceding layers and passes
its feature maps to all subsequent layers, promoting extensive feature reuse. The
DenseNet architecture comprises multiple dense blocks, with transition blocks in
between to manage dimensionality and ensure efficient processing.

In this study, we employed several CNN models to perform experiments and com-
parisons, following the methodology proposed by [Chuang et al. 2021]. The goal was to
train these networks to distinguish between normal conditions and 11 different types of



cancer. The main contribution of this work is demonstrating that by modifying and sim-
plifying the CNN2Layers model, we achieved results comparable to, or exceeding, state-
of-the-art performance with fewer layers, while preserving high accuracy and robustness.
This simplification significantly reduced computational complexity without sacrificing
performance, representing a notable advancement in optimizing CNN architectures for
cancer classification.

4. Experiments and Results
In Section 3, we presented the methodology proposed by the researchers
[Chuang et al. 2021], which integrates PPI and TCGA datasets to generate 6,136 im-
ages used as input for a CNN network. In this study, we applied this dataset as input
to 10 different CNN architectures for comparative analysis, including the architecture
employed by the aforementioned researchers. The goal was to train the various architec-
tures to classify between normal conditions and 11 different types of cancer. Out of the
10 architectures evaluated, one (a classical CNN) was the same as used in the work by
[Chuang et al. 2021], while the remaining eight were state-of-the-art models. Addition-
ally, we modified the AlexNet CNN architecture by reducing three layers to simplify the
network, resulting in a new model (CNN2layers).

To maintain consistency and comparability, we adopted the same data partitioning
strategy used by [Chuang et al. 2021], with 1,228 images (307 normal tissues and 921
tumors) for training, and the remaining 4,908 images for validation. Each model was
trained across 50 rounds, with 100 epochs per round, and evaluated using the metrics of
Accuracy, Precision, Recall, F1-Score, and ROC AUC Score.
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Figure 4. Accuracy comparison across various neural network architectures.
The red arrows indicate more outliers below. The figure demonstrates that the
CNN2Layers architecture achieved the highest accuracy and exhibited the low-
est variance, indicating strong robustness.

Figure 4 presents the accuracy results for various neural network architec-
tures. The X-axis represents the architectures compared—CNN2Layers, CNN, AlexNet,
DenseNet, ResNet50, Xception, VGG16, LeNet, VGG19, and InceptionV3—while the
Y-axis shows accuracy values, ranging from approximately 0.82 to 0.96. The architecture
with the highest accuracy was CNN2Layers, achieving 0.96, followed closely by CNN
(0.9555) and AlexNet (0.954). These models demonstrated exceptional performance,



yielding the top accuracy scores among the tested architectures. In terms of variance,
CNN2Layers, CNN, and AlexNet exhibited low variance, suggesting they are robust ar-
chitectures with consistent performance across different runs or datasets. Conversely,
InceptionV3, while still performing well with an accuracy of 0.9165, showed lower ac-
curacy compared to the leading models. Notably, while DenseNet achieved a relatively
high accuracy of 0.946, it displayed greater variance, potentially indicating sensitivity
to data variations or less consistent performance. ResNet50 and Xception also yielded
satisfactory results, with accuracies of 0.943 and 0.941, respectively, though they were
slightly outperformed by the top models. Lastly, VGG19 and VGG16 recorded accura-
cies of 0.928 and 0.939, positioning them mid-tier in terms of performance, with similar
results, suggesting comparable behavior. Despite being an older architecture, LeNet re-
mained competitive with an accuracy of 0.936, underscoring its effectiveness even in light
of more recent advancements.

The Figure 5 illustrates the F1 Score results for various neural network archi-
tectures, comparing their performance based on a balance between precision and recall.
The X-axis represents the architectures evaluated, while the Y-axis denotes the F1 Score
values, ranging from 0.82 to 0.96. Among the architectures, CNN2Layers achieved the
highest F1 Score, reaching 0.96, indicating superior performance overall. Similarly, CNN
also performed well, with an F1 Score of 0.9555, suggesting that both architectures are
strong candidates for this task. Conversely, the InceptionV3 architecture recorded the
lowest F1 Score, at 0.9165, highlighting its comparatively weaker performance. A note-
worthy observation is the low variance in performance for certain architectures, such as
CNN2Layers, CNN, and AlexNet, indicating greater robustness and stability, with mini-
mal outliers. This stability is crucial for ensuring consistent performance across different
application scenarios. In conclusion, the results clearly demonstrate the superior perfor-
mance of CNN2Layers, with CNN and AlexNet closely following, while InceptionV3
exhibited the most modest performance among the evaluated architectures.
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Figure 5. F1-Score comparison across various neural network architectures.
The red arrows indicate more outliers below. The figure demonstrates that the
CNN2Layers architecture achieved the highest F1-score and also exhibited the
lowest variance, indicating strong robustness.

The Table 2 summarizes the performance of various CNN architectures, evalu-



Architectures Accuracy Precision Recall F1-Score ROC AUC Score
CNN2Layers 0.960 0.987 0.958 0.956 0.998
CNN 0.9555 0.985 0.953 0.951 0.998
AlexNet 0.954 0.982 0.9515 0.949 0.998
DenseNet 0.946 0.978 0.942 0.941 0.996
ResNet50 0.943 0.973 0.9395 0.937 0.995
Xception 0.941 0.974 0.9375 0.9355 0.995
VGG16 0.939 0.969 0.9365 0.933 0.996
LeNet 0.936 0.981 0.933 0.9295 0.998
VGG19 0.928 0.959 0.924 0.9215 0.995
InceptionV3 0.9165 0.963 0.9075 0.909 0.9925

Table 2. Median values of Accuracy, Precision, Recall, F1-Score, and ROC AUC
Score for different architectures, ordered by Accuracy.

ated using metrics such as Accuracy, Precision, Recall, F1-Score, and ROC AUC Score.
Among these, the CNN2Layers model emerges as the top performer across multiple met-
rics. It achieved the highest accuracy (0.960), indicating the most correct predictions
relative to the total number of examples, and the highest precision (0.987), demonstrat-
ing a strong ability to correctly predict positive classes. Additionally, CNN2Layers led
in recall (0.958), meaning it effectively identified the majority of positive instances, and
recorded the best F1-Score (0.956), signifying an optimal balance between precision and
recall. Furthermore, several models, including CNN2Layers, CNN, AlexNet, and LeNet,
attained the highest ROC AUC Score (0.998), reflecting excellent class discrimination
capabilities.

Consequently, CNN2Layers is the most balanced model overall, making it a suit-
able choice for applications that require both high accuracy and reliable identification of
positive instances. While LeNet did not achieve the highest accuracy or precision, its ROC
AUC Score of 0.998 aligns it with more advanced models like CNN2Layers and AlexNet,
underscoring its strong class separation ability. In contrast, InceptionV3, with an accu-
racy of 0.9165, ranks among the lower-performing models in this evaluation. However,
its relatively high precision (0.963) may be advantageous in contexts where minimizing
false positives is more critical than capturing all true positives.

5. Conclusion
This study highlights the potential of CNN for cancer type prediction and classification by
integrating PPI networks with omics data. By leveraging a variety of CNN architectures
(CNN2Layers, CNN, AlexNet, DenseNet, ResNet50, Xception, VGG16, LeNet, VGG19,
and InceptionV3) we were able to assess and compare the performance, accuracy, and
computational efficiency of each model. Interestingly, simpler models demonstrated su-
perior results.

The integration of PPI networks with gene expression data from the TCGA
database allowed CNN to capture complex biological interactions, leading to improved
predictive accuracy. Unlike [Chuang et al. 2021] study, which employed a single CNN
architecture, our analysis encompassed 10 distinct architectures, offering a broader evalu-
ation. Notably, we achieved state-of-the-art performance using fewer layers, showcasing
both enhanced computational efficiency and predictive capability. These findings un-
derscore the promise of CNN models, particularly when enriched with comprehensive
biological data, in advancing personalized cancer diagnosis and treatment strategies.



Future research could explore data augmentation techniques to improve model
robustness, particularly for handling imbalanced cancer type distributions. Additionally,
testing the models on external datasets beyond the TCGA is necessary to evaluate their
generalizability. Finally, applying these models in clinical settings would be critical for
assessing their practical impact on patient care outcomes.
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